MathDL: mathematical deep learning for D3R Grand Challenge 4

被引:54
|
作者
Duc Duy Nguyen [1 ]
Gao, Kaifu [1 ]
Wang, Menglun [1 ]
Wei, Guo-Wei [1 ,2 ,3 ]
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[2] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA
[3] Michigan State Univ, Dept Elect & Comp Engn, E Lansing, MI 48824 USA
关键词
D3R-drug design data resource; Algebraic topology; Graph theory; Differential geometry; Binding affinity; Pose prediction; Docking; Deep learning; Generative adversarial network; EMPIRICAL SCORING FUNCTIONS; PROTEIN-LIGAND INTERACTIONS; BINDING-AFFINITY; GRAPH-THEORY; PERSISTENT HOMOLOGY; DYNAMICS; PREDICTION; DOCKING; ENERGY; FLEXIBILITY;
D O I
10.1007/s10822-019-00237-5
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We present the performances of our mathematical deep learning (MathDL) models for D3R Grand Challenge 4 (GC4). This challenge involves pose prediction, affinity ranking, and free energy estimation for beta secretase 1 (BACE) as well as affinity ranking and free energy estimation for Cathepsin S (CatS). We have developed advanced mathematics, namely differential geometry, algebraic graph, and/or algebraic topology, to accurately and efficiently encode high dimensional physical/chemical interactions into scalable low-dimensional rotational and translational invariant representations. These representations are integrated with deep learning models, such as generative adversarial networks (GAN) and convolutional neural networks (CNN) for pose prediction and energy evaluation, respectively. Overall, our MathDL models achieved the top place in pose prediction for BACE ligands in Stage 1a. Moreover, our submissions obtained the highest Spearman correlation coefficient on the affinity ranking of 460 CatS compounds, and the smallest centered root mean square error on the free energy set of 39 CatS molecules. It is worthy to mention that our method on docking pose predictions has significantly improved from our previous ones.
引用
下载
收藏
页码:131 / 147
页数:17
相关论文
共 50 条
  • [21] Sampling and refinement protocols for template-based macrocycle docking: 2018 D3R Grand Challenge 4
    Kotelnikov, Sergei
    Alekseenko, Andrey
    Liu, Cong
    Ignatov, Mikhail
    Padhorny, Dzmitry
    Brini, Emiliano
    Lukin, Mark
    Coutsias, Evangelos
    Dill, Ken A.
    Kozakov, Dima
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2020, 34 (02) : 179 - 189
  • [22] Shape similarity guided pose prediction: lessons from D3R Grand Challenge 3
    Ashutosh Kumar
    Kam Y. J. Zhang
    Journal of Computer-Aided Molecular Design, 2019, 33 : 47 - 59
  • [23] DockBench as docking selector tool: the lesson learned from D3R Grand Challenge 2015
    Veronica Salmaso
    Mattia Sturlese
    Alberto Cuzzolin
    Stefano Moro
    Journal of Computer-Aided Molecular Design, 2016, 30 : 773 - 789
  • [24] Protein-ligand pose and affinity prediction: Lessons from D3R Grand Challenge 3
    Koukos, Panagiotis I.
    Xue, Li C.
    Bonvin, Alexandre M. J. J.
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2019, 33 (01) : 83 - 91
  • [25] Performance evaluation of molecular docking and free energy calculations protocols using the D3R Grand Challenge 4 dataset
    Eddy Elisée
    Vytautas Gapsys
    Nawel Mele
    Ludovic Chaput
    Edithe Selwa
    Bert L. de Groot
    Bogdan I. Iorga
    Journal of Computer-Aided Molecular Design, 2019, 33 : 1031 - 1043
  • [26] Docking rigid macrocycles using Convex-PL, AutoDock Vina, and RDKit in the D3R Grand Challenge 4
    Maria Kadukova
    Vladimir Chupin
    Sergei Grudinin
    Journal of Computer-Aided Molecular Design, 2020, 34 : 191 - 200
  • [27] DockBench as docking selector tool: the lesson learned from D3R Grand Challenge 2015
    Salmaso, Veronica
    Sturlese, Mattia
    Cuzzolin, Alberto
    Moro, Stefano
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2016, 30 (09) : 773 - 789
  • [28] Performance evaluation of molecular docking and free energy calculations protocols using the D3R Grand Challenge 4 dataset
    Elisee, Eddy
    Gapsys, Vytautas
    Mele, Nawel
    Chaput, Ludovic
    Selwa, Edithe
    de Groot, Bert L.
    Iorga, Bogdan I.
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2019, 33 (12) : 1031 - 1043
  • [29] D3R Grand Challenge 4: prospective pose prediction of BACE1 ligands with AutoDock-GPU
    Diogo Santos-Martins
    Jerome Eberhardt
    Giulia Bianco
    Leonardo Solis-Vasquez
    Francesca Alessandra Ambrosio
    Andreas Koch
    Stefano Forli
    Journal of Computer-Aided Molecular Design, 2019, 33 : 1071 - 1081
  • [30] D3R Grand Challenge 3: blind prediction of protein-ligand poses and affinity rankings
    Gaieb, Zied
    Parks, Conor D.
    Chiu, Michael
    Yang, Huanwang
    Shao, Chenghua
    Walters, W. Patrick
    Lambert, Millard H.
    Nevins, Neysa
    Bembenek, Scott D.
    Ameriks, Michael K.
    Mirzadegan, Tara
    Burley, Stephen K.
    Amaro, Rommie E.
    Gilson, Michael K.
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2019, 33 (01) : 1 - 18