Application of Convolutional Neural Networks to Regenerate Deterministic Test Patterns for BIST

被引:0
|
作者
Inamoto, Tsutomu [1 ]
Higami, Yoshinobu [1 ]
机构
[1] Ehime Univ, Grad Sch Sci & Engn, Matsuyama, Ehime, Japan
关键词
combinational circuit; fault detection; logic BIST; test pattern; artificial neural network;
D O I
10.1109/itc-cscc.2019.8793374
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This study displays preliminary results on a simple technique to improve fault coverages in the BIST technology. The technique assumes that a circuit which implements an ANN can be used with the target circuit, and effective test patterns are given beforehand. Such ANN circuit is utilized as a degraded memory which approximately regenerates given test patterns. In computational illustrations, fault coverages of test patterns by the technique are calculated on c7552 of the ISCAS'85 benchmark.
引用
收藏
页码:114 / 115
页数:2
相关论文
共 50 条
  • [31] Confident Classification Using a Hybrid Between Deterministic and Probabilistic Convolutional Neural Networks
    Bajwa, Muhammad Naseer
    Khurram, Suleman
    Munir, Mohsin
    Siddiqui, Shoaib Ahmed
    Malik, Muhammad Imran
    Dengel, Andreas
    Ahmed, Sheraz
    [J]. IEEE ACCESS, 2020, 8 : 115476 - 115485
  • [32] On the Generation of Compact Deterministic Test Sets for BIST Ready Designs
    Kumar, Amit
    Rajski, Janusz
    Reddy, Sudhakar M.
    Rinderknecht, Thomas
    [J]. 2013 22ND ASIAN TEST SYMPOSIUM (ATS), 2013, : 201 - 206
  • [33] Enhancements in deterministic BIST implementations for improving test of complex SOCs
    Jain, Sandeep
    Abraham, Jais
    Vooka, Srinivas Kumar
    Kale, Sumant
    Dutta, Amit
    Parekhji, Rubin
    [J]. 20TH INTERNATIONAL CONFERENCE ON VLSI DESIGN, PROCEEDINGS: TECHNOLOGY CHALLENGES IN THE NANOELECTRONICS ERA, 2007, : 339 - +
  • [34] A deterministic BIST scheme for test time reduction in VLSI circuits
    Solana, JA
    [J]. VLSI CIRCUITS AND SYSTEMS II, PTS 1 AND 2, 2005, 5837 : 1086 - 1097
  • [35] Application of Convolutional Neural Networks for Dentistry Occlusion Classification
    Juneja, Mamta
    Saini, Sumindar Kaur
    Kaur, Harleen
    Jindal, Prashant
    [J]. WIRELESS PERSONAL COMMUNICATIONS, 2024, 136 (03) : 1749 - 1767
  • [36] Application of Convolutional Neural Networks for Multimodal Identification Task
    Stefanidi, Anton
    Topnikov, Artem
    Tupitsin, Gennadiy
    Priorov, Andrey
    [J]. PROCEEDINGS OF THE 26TH CONFERENCE OF OPEN INNOVATIONS ASSOCIATION FRUCT, 2020, : 423 - 428
  • [37] Application of Deep Convolutional Neural Networks in the Diagnosis of Osteoporosis
    Dzierzak, Roza
    Omiotek, Zbigniew
    [J]. SENSORS, 2022, 22 (21)
  • [38] Evolutionary convolutional neural networks: An application to handwriting recognition
    Baldominos, Alejandro
    Saez, Yago
    Isasi, Pedro
    [J]. NEUROCOMPUTING, 2018, 283 : 38 - 52
  • [39] Application of convolutional neural networks for stellar spectral classification
    Sharma, Kaushal
    Kembhavi, Ajit
    Kembhavi, Aniruddha
    Sivarani, T.
    Abraham, Sheelu
    Vaghmare, Kaustubh
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 491 (02) : 2280 - 2300
  • [40] Application of convolutional neural networks to spin models studies
    Perzhu, A. V.
    Vasiliev, E. V.
    Korol, A. O.
    Kapitan, D. Yu.
    Rybin, A. E.
    Kapitan, V. Yu.
    [J]. ST PETERSBURG POLYTECHNIC UNIVERSITY JOURNAL-PHYSICS AND MATHEMATICS, 2022, 15 (03): : 87 - 92