PT-symmetric representations of fermionic algebras

被引:19
|
作者
Bender, Carl M. [1 ]
Klevansky, S. P. [2 ]
机构
[1] Washington Univ, Dept Phys, St Louis, MO 63130 USA
[2] Heidelberg Univ, Inst Theoret Phys, D-69120 Heidelberg, Germany
来源
PHYSICAL REVIEW A | 2011年 / 84卷 / 02期
关键词
D O I
10.1103/PhysRevA.84.024102
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A recent paper by Jones-Smith and Mathur, Phys. Rev. A 82, 042101 (2010) extends PT-symmetric quantum mechanics from bosonic systems (systems for which T-2 = 1) to fermionic systems (systems for which T-2 = -1). The current paper shows how the formalism developed by Jones-Smith and Mathur can be used to construct PT-symmetric matrix representations for operator algebras of the form eta(2) = 0, (eta) over bar (2) = 0, eta(eta) over bar + (eta) over bar eta = alpha 1, where (eta) over bar = eta(PT) = PT eta T-1P-1. It is easy to construct matrix representations for the Grassmann algebra (alpha = 0). However, one can only construct matrix representations for the fermionic operator algebra (alpha not equal 0) if alpha = -1; a matrix representation does not exist for the conventional value alpha = 1.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] PT-symmetric deformations of Calogero models
    Fring, Andreas
    Znojil, Miloslav
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (19)
  • [42] Nonlinear waves in PT-symmetric systems
    Konotop, Vladimir V.
    Yang, Jianke
    Zezyulin, Dmitry A.
    REVIEWS OF MODERN PHYSICS, 2016, 88 (03)
  • [43] Solitons in a Hamiltonian PT-symmetric coupler
    Zezyulin, Dmitry A.
    Konotop, Vladimir V.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (01)
  • [44] Solitons in a PT-symmetric χ(2) coupler
    Ogren, Magnus
    Abdullaev, Fatkhulla Kh.
    Konotop, Vladimir V.
    OPTICS LETTERS, 2017, 42 (20) : 4079 - 4082
  • [45] Scattering in PT-symmetric quantum mechanics
    Cannata, Francesco
    Dedonder, Jean-Pierre
    Ventura, Alberto
    ANNALS OF PHYSICS, 2007, 322 (02) : 397 - 433
  • [46] PT-symmetric models in curved manifolds
    Krejcirik, David
    Siegl, Petr
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (48)
  • [47] PT-symmetric ladders with a scattering core
    D'Ambroise, J.
    Lepri, S.
    Malomed, B. A.
    Kevrekidis, P. G.
    PHYSICS LETTERS A, 2014, 378 (38-39) : 2824 - 2830
  • [48] Purcell Effect in PT-Symmetric Waveguides
    Karabchevsky, Alina
    Novitsky, Andrey
    Morozko, Fyodor
    CHIRALITY, MAGNETISM AND MAGNETOELECTRICITY: SEPARATE PHENOMENA AND JOINT EFFECTS IN METAMATERIAL STRUCTURES, 2021, 138 : 493 - 522
  • [49] PT-symmetric chirped Bragg structures
    Kozar, Anatoliy. V.
    Marchenko, Vladimir F.
    Shestakov, Pavel Yu.
    MICRO-STRUCTURED AND SPECIALTY OPTICAL FIBRES V, 2018, 10681
  • [50] Discrete PT-symmetric models of scattering
    Znojil, Miloslav
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (29)