共 50 条
PT-symmetric representations of fermionic algebras
被引:19
|作者:
Bender, Carl M.
[1
]
Klevansky, S. P.
[2
]
机构:
[1] Washington Univ, Dept Phys, St Louis, MO 63130 USA
[2] Heidelberg Univ, Inst Theoret Phys, D-69120 Heidelberg, Germany
来源:
PHYSICAL REVIEW A
|
2011年
/
84卷
/
02期
关键词:
D O I:
10.1103/PhysRevA.84.024102
中图分类号:
O43 [光学];
学科分类号:
070207 ;
0803 ;
摘要:
A recent paper by Jones-Smith and Mathur, Phys. Rev. A 82, 042101 (2010) extends PT-symmetric quantum mechanics from bosonic systems (systems for which T-2 = 1) to fermionic systems (systems for which T-2 = -1). The current paper shows how the formalism developed by Jones-Smith and Mathur can be used to construct PT-symmetric matrix representations for operator algebras of the form eta(2) = 0, (eta) over bar (2) = 0, eta(eta) over bar + (eta) over bar eta = alpha 1, where (eta) over bar = eta(PT) = PT eta T-1P-1. It is easy to construct matrix representations for the Grassmann algebra (alpha = 0). However, one can only construct matrix representations for the fermionic operator algebra (alpha not equal 0) if alpha = -1; a matrix representation does not exist for the conventional value alpha = 1.
引用
收藏
页数:5
相关论文