A variance for k-free numbers in arithmetic progressions of given modulus

被引:0
|
作者
Parry, Tomos
机构
来源
关键词
k-free number; variance; arithmetic progression;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An asymptotic formula for the variance of squarefree numbers in arithmetic progressions of given modulus was obtained by Nunes, see [9]. We improve one of the error terms as far as one would expect to be able to go.
引用
收藏
页码:317 / 360
页数:45
相关论文
共 50 条
  • [21] On smooth square-free numbers in arithmetic progressions
    Munsch, Marc
    Shparlinski, Igor E.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2020, 101 (03): : 1041 - 1067
  • [22] THE DISTRIBUTION OF r-FREE NUMBERS IN ARITHMETIC PROGRESSIONS
    Gibson, Jason
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2014, 10 (03) : 559 - 563
  • [23] On the exponential sum over k-free numbers
    Brudern, J
    Granville, A
    Perelli, A
    Vaughan, RC
    Wooley, TD
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 356 (1738): : 739 - 761
  • [24] Some new results on k-free numbers
    Meng, Zaizhao
    JOURNAL OF NUMBER THEORY, 2006, 121 (01) : 45 - 66
  • [25] The distribution of k-free numbers and the derivative of the Riemann
    Meng, Xianchang
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2017, 162 (02) : 293 - 317
  • [26] On k-Free Numbers Over Beatty Sequences
    Zhang, Wei
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2023, 73 (03) : 839 - 847
  • [27] On k-free numbers over Beatty sequences
    Wei Zhang
    Czechoslovak Mathematical Journal, 2023, 73 : 839 - 847
  • [28] MOMENTS OF GAPS BETWEEN K-FREE NUMBERS
    GRAHAM, SW
    JOURNAL OF NUMBER THEORY, 1993, 44 (01) : 105 - 117
  • [29] k-FREE NUMBERS AND INTEGER PARTS OF αp
    Cam Celik, Sermin
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2022, 71 (01): : 237 - 251
  • [30] Twins of k-free numbers and their exponential sum
    Brüdern, J
    Perelli, A
    Wooley, TD
    MICHIGAN MATHEMATICAL JOURNAL, 2000, 47 (01) : 173 - 190