On smooth square-free numbers in arithmetic progressions

被引:3
|
作者
Munsch, Marc [1 ]
Shparlinski, Igor E. [2 ]
机构
[1] 5010 Inst Anal & Zahlentheorie, Steyrergasse 30, A-8010 Graz, Austria
[2] Univ New South Wales, Dept Pure Math, Sydney, NSW 2052, Australia
基金
奥地利科学基金会; 澳大利亚研究理事会;
关键词
11N25 (primary); 11B25; 11L40 (secondary); SHORT INTERVALS; CHARACTER SUMS; PRODUCTS; INTEGERS; CONGRUENCES; PRIMES; MODULO;
D O I
10.1112/jlms.12297
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Booker and Pomerance [Proc. Amer. Math. Soc. 145 (2017) 5035-5042] have shown that any residue class modulo a prime p > 11 can be represented by a positive p-smooth square-free integer s=pO(logp) with all prime factors up to p and conjectured that in fact one can find such s with s=pO(1). Using bounds on double Kloosterman sums due to Garaev [Mat. Zametki 88 (2010) 365-373] we prove this conjecture in a stronger form s <= p3/2+o(1) and also consider more general versions of this question replacing p-smoothness of s by the stronger condition of p alpha-smoothness. Using bounds on multiplicative character sums and a sieve method, we also show that we can represent all residue classes by a positive square-free integer s <= p2+o(1) which is p1/(4e1/2)+o(1)-smooth. Additionally, we obtain stronger results for almost all primes p.
引用
收藏
页码:1041 / 1067
页数:27
相关论文
共 50 条
  • [1] SQUARE-FREE NUMBERS IN ARITHMETIC PROGRESSIONS
    FLUCH, W
    [J]. MONATSHEFTE FUR MATHEMATIK, 1968, 72 (05): : 427 - &
  • [2] SQUARE-FREE NUMBERS IN ARITHMETIC PROGRESSIONS
    CROFT, MJ
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1975, 30 (FEB) : 143 - 159
  • [3] On square-free arithmetic progressions in infinite words
    Harju, Tero
    [J]. THEORETICAL COMPUTER SCIENCE, 2019, 770 : 95 - 100
  • [4] On the index of fractions with square-free denominators in arithmetic progressions
    Emre Alkan
    Andrew H. Ledoan
    Marian Vâjâitu
    Alexandru Zaharescu
    [J]. The Ramanujan Journal, 2008, 16 : 131 - 161
  • [5] On the index of fractions with square-free denominators in arithmetic progressions
    Alkan, Emre
    Ledoan, Andrew H.
    Vajaitu, Marian
    Zaharescu, Alexandru
    [J]. RAMANUJAN JOURNAL, 2008, 16 (02): : 131 - 161
  • [6] On Square-Free Numbers
    Grabowski, Adam
    [J]. FORMALIZED MATHEMATICS, 2013, 21 (02): : 153 - 162
  • [7] The distribution of smooth numbers in arithmetic progressions
    Soundararajan, Kannan
    [J]. ANATOMY OF INTEGERS, 2008, 46 : 115 - 128
  • [8] THE DISTRIBUTION OF SMOOTH NUMBERS IN ARITHMETIC PROGRESSIONS
    BALOG, A
    POMERANCE, C
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 115 (01) : 33 - 43
  • [9] Consecutive square-free numbers and square-free primitive roots
    Jing, Mengyao
    Liu, Huaning
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2022, 18 (01) : 205 - 226
  • [10] DISTRIBUTION OF SQUARE-FREE NUMBERS
    HOOLEY, C
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1973, 25 (06): : 1216 - 1223