Fast Approximate Quadratic Programming for Graph Matching

被引:86
|
作者
Vogelstein, Joshua T. [1 ]
Conroy, John M. [2 ]
Lyzinski, Vince [3 ]
Podrazik, Louis J. [2 ]
Kratzer, Steven G. [2 ]
Harley, Eric T. [4 ]
Fishkind, Donnie E. [4 ]
Vogelstein, R. Jacob [5 ]
Priebe, Carey E. [4 ]
机构
[1] Johns Hopkins Univ, Dept Biomed Engn, Baltimore, MD 21218 USA
[2] Inst Def Analyses, Ctr Comp Sci, Bowie, MD USA
[3] Johns Hopkins Univ, Human Language Technol Ctr Excellence, Baltimore, MD USA
[4] Johns Hopkins Univ, Dept Appl Math & Stat, Baltimore, MD USA
[5] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 21218 USA
来源
PLOS ONE | 2015年 / 10卷 / 04期
关键词
ASSIGNMENT; ALGORITHM;
D O I
10.1371/journal.pone.0121002
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quadratic assignment problems arise in a wide variety of domains, spanning operations research, graph theory, computer vision, and neuroscience, to name a few. The graph matching problem is a special case of the quadratic assignment problem, and graph matching is increasingly important as graph-valued data is becoming more prominent. With the aim of efficiently and accurately matching the large graphs common in big data, we present our graph matching algorithm, the Fast Approximate Quadratic assignment algorithm. We empirically demonstrate that our algorithm is faster and achieves a lower objective value on over 80% of the QAPLIB benchmark library, compared with the previous state-of-the-art. Applying our algorithm to our motivating example, matching C. elegans connectomes (brain-graphs), we find that it efficiently achieves performance.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] FAST APPROXIMATE MATCHING OF WORDS AGAINST A DICTIONARY
    BUNKE, H
    COMPUTING, 1995, 55 (01) : 75 - 89
  • [42] Generalizing graph matching beyond quadratic assignment model
    Yu, Tianshu
    Yan, Junchi
    Wang, Yilin
    Liu, Wei
    Li, Baoxin
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [43] Multiple object tracking based on quadratic graph matching
    Gao, Jiayan
    Zou, Qi
    Zhao, Hongwei
    IET COMPUTER VISION, 2023, 17 (06) : 626 - 637
  • [44] CLAP: Concave Linear APproximation for Quadratic Graph Matching
    Liang, Yongqing
    Han, Huijun
    Li, Xin
    ADVANCES IN VISUAL COMPUTING, ISVC 2024, PT I, 2025, 15046 : 287 - 299
  • [45] Spectral Graph Matching and Regularized Quadratic Relaxations II
    Fan, Zhou
    Mao, Cheng
    Wu, Yihong
    Xu, Jiaming
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2023, 23 (05) : 1567 - 1617
  • [46] Convex Quadratic Programming Approach to the Maximum Matching Problem
    Domingos M. Cardoso
    Journal of Global Optimization, 2001, 19 : 291 - 306
  • [47] Convex Quadratic Programming Approach to the Maximum Matching Problem
    Cardoso D.M.
    Journal of Global Optimization, 2001, 21 (1) : 91 - 106
  • [48] RECURSIVE QUADRATIC-PROGRAMMING ALGORITHM FOR COLOR MATCHING
    COGNO, JA
    COLOR RESEARCH AND APPLICATION, 1988, 13 (02): : 124 - 126
  • [49] SOLVING DENSE STEREO MATCHING VIA QUADRATIC PROGRAMMING
    Ma, Rui
    Au, Oscar C.
    Wan, Pengfei
    Sun, Wenxiu
    Xu, Lingfeng
    Jia, Luheng
    2014 IEEE VISUAL COMMUNICATIONS AND IMAGE PROCESSING CONFERENCE, 2014, : 370 - 373
  • [50] Understanding hand gestures using approximate graph matching
    Miners, BW
    Basir, OA
    Kamel, MS
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 2005, 35 (02): : 239 - 248