Fast Approximate Quadratic Programming for Graph Matching

被引:86
|
作者
Vogelstein, Joshua T. [1 ]
Conroy, John M. [2 ]
Lyzinski, Vince [3 ]
Podrazik, Louis J. [2 ]
Kratzer, Steven G. [2 ]
Harley, Eric T. [4 ]
Fishkind, Donnie E. [4 ]
Vogelstein, R. Jacob [5 ]
Priebe, Carey E. [4 ]
机构
[1] Johns Hopkins Univ, Dept Biomed Engn, Baltimore, MD 21218 USA
[2] Inst Def Analyses, Ctr Comp Sci, Bowie, MD USA
[3] Johns Hopkins Univ, Human Language Technol Ctr Excellence, Baltimore, MD USA
[4] Johns Hopkins Univ, Dept Appl Math & Stat, Baltimore, MD USA
[5] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 21218 USA
来源
PLOS ONE | 2015年 / 10卷 / 04期
关键词
ASSIGNMENT; ALGORITHM;
D O I
10.1371/journal.pone.0121002
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quadratic assignment problems arise in a wide variety of domains, spanning operations research, graph theory, computer vision, and neuroscience, to name a few. The graph matching problem is a special case of the quadratic assignment problem, and graph matching is increasingly important as graph-valued data is becoming more prominent. With the aim of efficiently and accurately matching the large graphs common in big data, we present our graph matching algorithm, the Fast Approximate Quadratic assignment algorithm. We empirically demonstrate that our algorithm is faster and achieves a lower objective value on over 80% of the QAPLIB benchmark library, compared with the previous state-of-the-art. Applying our algorithm to our motivating example, matching C. elegans connectomes (brain-graphs), we find that it efficiently achieves performance.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Deep Graph Matching under Quadratic Constraint
    Gao, Quankai
    Wang, Fudong
    Xue, Nan
    Yu, Jin-Gang
    Xia, Gui-Song
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 5067 - 5074
  • [22] Fast approximate graph partitioning algorithms
    Even, G
    Naor, J
    Rao, S
    Schieber, B
    PROCEEDINGS OF THE EIGHTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 1997, : 639 - 648
  • [23] Correcting the Output of Approximate Graph Matching Algorithms
    Lubars, Joseph
    Srikant, R.
    IEEE CONFERENCE ON COMPUTER COMMUNICATIONS (IEEE INFOCOM 2018), 2018, : 1754 - 1762
  • [24] TALE: A tool for approximate large graph matching
    Tian, Yuanyuan
    Patel, Jignesh M.
    2008 IEEE 24TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING, VOLS 1-3, 2008, : 963 - +
  • [25] Fast approximate graph partitioning algorithms
    Even, G
    Naor, JS
    Rao, S
    Schieber, B
    SIAM JOURNAL ON COMPUTING, 1999, 28 (06) : 2187 - 2214
  • [26] The general graph matching game: Approximate core
    Vazirani, Vijay V.
    GAMES AND ECONOMIC BEHAVIOR, 2022, 132 : 478 - 486
  • [27] An Approximate Quadratic Programming for Efficient Bellman Equation Solution
    Su, Jianmei
    Cheng, Hong
    Guo, Hongliang
    Huang, Rui
    Peng, Zhinan
    IEEE ACCESS, 2019, 7 : 126077 - 126087
  • [28] Approximate graph edit distance computation by means of bipartite graph matching
    Riesen, Kaspar
    Bunke, Horst
    IMAGE AND VISION COMPUTING, 2009, 27 (07) : 950 - 959
  • [29] Fast Exact Hyper-graph Matching with Dynamic Programming for Spatio-temporal Data
    Oya Çeliktutan
    Christian Wolf
    Bülent Sankur
    Eric Lombardi
    Journal of Mathematical Imaging and Vision, 2015, 51 : 1 - 21
  • [30] Fast Exact Hyper-graph Matching with Dynamic Programming for Spatio-temporal Data
    Celiktutan, Oya
    Wolf, Christian
    Sankur, Bulent
    Lombardi, Eric
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2015, 51 (01) : 1 - 21