Phonon confinement in Ge nanocrystals in silicon oxide matrix

被引:17
|
作者
Jie, Yiaxiong [1 ]
Wee, A. T. S. [1 ]
Huan, C. H. A. [2 ]
Shen, Z. X. [2 ]
Choi, W. K. [3 ]
机构
[1] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
[2] Nanyang Technol Univ, Sch Phys & Math Sci, Div Phys & Appl Phys, Singapore 637371, Singapore
[3] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117576, Singapore
关键词
NEAR-INFRARED PHOTOLUMINESCENCE; BOND-CHARGE MODEL; VISIBLE PHOTOLUMINESCENCE; IMPLANTED SIO2-FILMS; LATTICE-DYNAMICS; RAMAN-SPECTRA; SI; FILMS; SEMICONDUCTORS; TEMPERATURE;
D O I
10.1063/1.3503444
中图分类号
O59 [应用物理学];
学科分类号
摘要
Spherical Ge nanocrystals well-dispersed in amorphous silicon oxide matrix have been synthesized with different sizes, and significant size-dependent Raman shift and broadening have been observed. The lattice constant of Ge nanocrystals well-bonded to silicon oxide matrix has been characterized nearly size-independent. With our proposed stress generation and relaxation mechanisms, stress effects in our samples have been analyzed to be insignificant with respect to phonon confinement effects. The phenomenological model introduced by [Richter, Wang, and Ley, Solid State Commun. 39, 625 (1981] with Gaussian weighting function and TO2 phonon dispersion function has been found to give a quite good description of the measured size-dependence of Raman shift and broadening. A 3-peak fitting method has been proposed to determine Ge nanocrystal size and film crystallinity. After physically quantizing quantum-confined one-dimensional elastic waves, we have deduced that each quantum-confined phonon possesses an instantaneous momentum of a given magnitude hk with an equal chance of being either positive or negative and momentum conservation is retained in an electron-phonon scattering process. Therefore, on the basis of the first-principle microscopic model and our experimental results, we deduced that Raman scattering in spherical nanocrystals is a concurrent two-phonon process, one phonon generation and one phonon transition. (C) 2011 American Institute of Physics. [doi:10.1063/1.3503444]
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Microscopic phonon theory of Si/Ge nanocrystals
    Wei Cheng
    David Marx
    Shang-fen Ren
    Frontiers of Physics in China, 2008, 3 : 165 - 172
  • [32] Confinement of CdS Nanocrystals in a Sonogel Matrix
    R. Litrán
    R. Alcántara
    E. Blanco
    M. Ramírez-del-Solar
    Journal of Sol-Gel Science and Technology, 1997, 8 : 275 - 283
  • [33] Quantum confinement regime in silicon nanocrystals
    Derr, Julien
    Dunn, Kerry
    Riabinina, Daria
    Martin, Francois
    Chaker, Mohamed
    Rosei, Federico
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2009, 41 (04): : 668 - 670
  • [34] Confinement of CdS nanocrystals in a sonogel matrix
    Litran, R
    Alcantara, R
    Blanco, E
    RamirezDelSolar, M
    JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 1997, 8 (1-3) : 275 - 283
  • [35] Confinement of CdS nanocrystals in a sonogel matrix
    Universidad de Cadiz, Cadiz, Spain
    J Sol Gel Sci Technol, 1-3 (275-283):
  • [36] Confinement of CdS nanocrystals in a sonogel matrix
    R. Litrán
    R. Alcántara
    E. Blanco
    M. Ramírez-Del-Solar
    Journal of Sol-Gel Science and Technology, 1997, 8 : 275 - 283
  • [37] Transport and confinement in silicon nanocrystals and porous silicon.
    Brus, LE
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1996, 211 : 105 - PHYS
  • [38] Raman scattering from confined acoustic phonons of silicon nanocrystals in silicon oxide matrix
    Zatryb, G.
    Wilson, P. R. J.
    Wojcik, J.
    Misiewicz, J.
    Mascher, P.
    Podhorodecki, A.
    PHYSICAL REVIEW B, 2015, 91 (23):
  • [39] Charge carrier transport in a structure with silicon nanocrystals embedded into oxide matrix
    Yu. V. Ryabchikov
    P. A. Forsh
    E. A. Lebedev
    V. Yu. Timoshenko
    P. K. Kashkarov
    B. V. Kamenev
    L. Tsybeskov
    Semiconductors, 2006, 40 : 1052 - 1054
  • [40] Charge carrier transport in a structure with silicon nanocrystals embedded into oxide matrix
    Ryabchikov, Yu. V.
    Forsh, P. A.
    Lebedev, E. A.
    Timoshenko, V. Yu.
    Kashkarov, P. K.
    Kamenev, B. V.
    Tsybeskov, L.
    SEMICONDUCTORS, 2006, 40 (09) : 1052 - 1054