DADA: Depth-Aware Domain Adaptation in Semantic Segmentation

被引:93
|
作者
Vu, Tuan-Hung [1 ]
Jain, Himalaya [1 ]
Bucher, Maxime [1 ]
Cord, Matthieu [1 ,2 ]
Perez, Patrick [1 ]
机构
[1] Valeo Ai, Paris, France
[2] Sorbonne Univ, Paris, France
关键词
D O I
10.1109/ICCV.2019.00746
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unsupervised domain adaptation (UDA) is important for applications where large scale annotation of representative data is challenging. For semantic segmentation in particular, it helps deploy, on real "target domain" data, models that are trained on annotated images from a different "source domain", notably a virtual environment. To this end, most previous works consider semantic segmentation as the only mode of supervision for source domain data, while ignoring other, possibly available, information like depth. In this work, we aim at exploiting at best such a privileged information while training the UDA model. We propose a unified depth-aware UDA framework that leverages in several complementary ways the knowledge of dense depth in the source domain. As a result, the performance of the trained semantic segmentation model on the target domain is boosted. Our novel approach indeed achieves state-of-the-art performance on different challenging synthetic-2-real benchmarks. Code and models are available at https://github.com/ valeoai/DADA.
引用
收藏
页码:7363 / 7372
页数:10
相关论文
共 50 条
  • [41] Depth-Aware Image Colorization Network
    Chu, Wei-Ta
    Hsu, Yu-Ting
    PROCEEDINGS OF THE 2018 WORKSHOP ON UNDERSTANDING SUBJECTIVE ATTRIBUTES OF DATA, WITH THE FOCUS ON EVOKED EMOTIONS (EE-USAD'18), 2018, : 17 - 23
  • [42] Depth-Aware Video Frame Interpolation
    Bao, Wenbo
    Lai, Wei-Sheng
    Ma, Chao
    Zhang, Xiaoyun
    Gao, Zhiyong
    Yang, Ming-Hsuan
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 3698 - 3707
  • [43] Depth-aware image vectorization and editing
    Shufang Lu
    Wei Jiang
    Xuefeng Ding
    Craig S. Kaplan
    Xiaogang Jin
    Fei Gao
    Jiazhou Chen
    The Visual Computer, 2019, 35 : 1027 - 1039
  • [44] MonoDVPS: A Self-Supervised Monocular Depth Estimation Approach to Depth-aware Video Panoptic Segmentation
    Petrovai, Andra
    Nedevschi, Sergiu
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 3076 - 3085
  • [45] Depth-aware image vectorization and editing
    Lu, Shufang
    Jiang, Wei
    Ding, Xuefeng
    Kaplan, Craig S.
    Jin, Xiaogang
    Gao, Fei
    Chen, Jiazhou
    VISUAL COMPUTER, 2019, 35 (6-8): : 1027 - 1039
  • [46] ViP-DeepLab: Learning Visual Perception with Depth-aware Video Panoptic Segmentation
    Qiao, Siyuan
    Zhu, Yukun
    Adam, Hartwig
    Yuille, Alan
    Chen, Liang-Chieh
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 3996 - 4007
  • [47] PDA: Progressive Domain Adaptation for Semantic Segmentation
    Liao, Muxin
    Tian, Shishun
    Zhang, Yuhang
    Hua, Guoguang
    Zou, Wenbin
    Li, Xia
    KNOWLEDGE-BASED SYSTEMS, 2024, 284
  • [48] Knowledge based domain adaptation for semantic segmentation
    Zhang, Yuxiao
    Ye, Mao
    Gan, Yan
    Zhang, Wencong
    KNOWLEDGE-BASED SYSTEMS, 2020, 193
  • [49] Multichannel Semantic Segmentation with Unsupervised Domain Adaptation
    Watanabe, Kohei
    Saito, Kuniaki
    Ushiku, Yoshitaka
    Harada, Tatsuya
    COMPUTER VISION - ECCV 2018 WORKSHOPS, PT V, 2019, 11133 : 600 - 616
  • [50] FDA: Fourier Domain Adaptation for Semantic Segmentation
    Yang, Yanchao
    Soatto, Stefano
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 4084 - 4094