Experimental verification of tire energy harvester designed via reliability based design optimization method

被引:2
|
作者
Eshghi, Amin Toghi [1 ]
Lee, Soobum [1 ]
Sadoughi, Mohammad Kazem [2 ]
Hu, Chao [2 ]
Kim, Young-Cheol [3 ]
Seo, Jong-Ho [3 ]
机构
[1] Univ Maryland Baltimore Cty, Dept Mech Engn, 1000 Hilltop Circle, Baltimore, MD 21250 USA
[2] Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA
[3] Korea Inst Machinery & Mat, Dept Syst Dynam, 156 Gajungbukno, Daejeon 305343, South Korea
关键词
Vibration; Piezoelectric energy harvester; Tire pressure monitoring; Reliability-based design optimization; SYSTEM; PERFORMANCE;
D O I
10.1117/12.2296625
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper a piezoelectric energy harvester for scavenging wasted vibration energy inside a vehicle tire is designed and its performance is experimentally verified. Piezoelectric type energy harvesters can be used to collect vibrational energy and power such systems, but they need to be carefully designed to address power generation and durability performances. In this study, we address a reliability based design optimization (RBDO) approach to design the harvester that considers the uncertainty in dimensional tolerances and material properties, to be compared to the traditional deterministic design optimization (DDO). Both designs are manufactured for the experimental evaluation to demonstrate the merits of RBDO design over DDO.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Reliability-based design optimization via high order response surface method
    Hong-Shuang Li
    Journal of Mechanical Science and Technology, 2013, 27 : 1021 - 1029
  • [22] Reliability-based design optimization via high order response surface method
    Li, Hong-Shuang
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2013, 27 (04) : 1021 - 1029
  • [23] Modeling and Experimental Verification of an Electromagnetic and Piezoelectric Hybrid Energy Harvester
    Fan Yuanyuan
    Sang Yingjun
    Li Man
    Wu Shangguang
    Ding Zujun
    Wang Yeqin
    Hao Yunrong
    JOURNAL OF ENGINEERING AND TECHNOLOGICAL SCIENCES, 2016, 48 (05): : 614 - 630
  • [24] Design Optimization of MEMS Piezoelectric Energy Harvester
    Hoffmann, D.
    Bechtold, T.
    Hohlfeld, D.
    2016 17TH INTERNATIONAL CONFERENCE ON THERMAL, MECHANICAL AND MULTI-PHYSICS SIMULATION AND EXPERIMENTS IN MICROELECTRONICS AND MICROSYSTEMS (EUROSIME), 2016,
  • [25] Design and experimental investigation of an asymmetric piezoelectric energy harvester based on galloping
    Zheng, Shu
    Zhang, Dan
    Song, Rujun
    Zhang, Leian
    Sui, Wentao
    FERROELECTRICS, 2023, 602 (01) : 94 - 104
  • [26] A Reliability Index Based Decoupling Method for Reliability-Based Design Optimization
    Chen, Zhenzhong
    Qiu, Haobo
    Hao, Hongyan
    Xiong, Huadi
    ADVANCES IN PRODUCT DEVELOPMENT AND RELIABILITY III, 2012, 544 : 223 - 228
  • [27] An approximate sequential optimization and reliability assessment method for reliability-based design optimization
    Ping Yi
    Zuo Zhu
    Jinxin Gong
    Structural and Multidisciplinary Optimization, 2016, 54 : 1367 - 1378
  • [28] An approximate sequential optimization and reliability assessment method for reliability-based design optimization
    Yi, Ping
    Zhu, Zuo
    Gong, Jinxin
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2016, 54 (06) : 1367 - 1378
  • [29] A new method for reliability analysis and reliability-based design optimization
    Canelas, Alfredo
    Carrasco, Miguel
    Lopez, Julio
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2019, 59 (05) : 1655 - 1671
  • [30] A new method for reliability analysis and reliability-based design optimization
    Alfredo Canelas
    Miguel Carrasco
    Julio López
    Structural and Multidisciplinary Optimization, 2019, 59 : 1655 - 1671