Realisability of p-stable fusion systems

被引:2
|
作者
Hethelyi, L. [1 ]
Szoke, M. [2 ]
机构
[1] Budapest Univ Technol & Econ, Dept Algebra, Budapest, Hungary
[2] Obuda Univ, Inst Appl Math, John von Neumann Fac Informat, Budapest, Hungary
关键词
Saturated fusion systems; Soluble fusion systems; p-stability; Realisable fusion systems; Characteristic p-functors; SUBGROUP;
D O I
10.1016/j.jalgebra.2018.11.029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to investigate p-stable fusion systems, where p is an odd prime. We examine realisable fusion systems and prove a generalisation of a result of G. Glauberman. Then we prove that p-stability is determined by the normaliser systems of centric radical subgroups. Finally, we prove that all p-stable fusion systems are realisable provided there exists a stable p-functor. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:247 / 256
页数:10
相关论文
共 50 条
  • [21] Variations of Frechet measures of p-stable motions
    Blei, RC
    Towghi, N
    STATISTICS & PROBABILITY LETTERS, 2002, 56 (04) : 355 - 360
  • [22] EXTENSIONS OF THE SLEPIAN LEMMA TO P-STABLE MEASURES
    LINDE, W
    LECTURE NOTES IN MATHEMATICS, 1984, 1080 : 162 - 169
  • [23] The number of locally p-stable functions on Qn
    Calbet, Asier
    DISCRETE MATHEMATICS, 2022, 345 (06)
  • [24] P-STABLE AND P-CONSTRAINED FINITE-GROUPS
    PUIG, L
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1974, 278 (17): : 1081 - 1082
  • [25] HIGH-ORDER P-STABLE MULTISTEP METHODS
    FRANCO, JM
    PALACIOS, M
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1990, 30 (01) : 1 - 10
  • [26] An Optimized Multistage Complete in Phase P-Stable Algorithm
    Kovalnogov, Vladislav N.
    Fedorov, Ruslan, V
    Bondarenko, Aleksandr A.
    Simos, Theodore E.
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2019, 82 (02) : 385 - 438
  • [27] More on P-Stable Convex Sets in Banach Spaces
    Yu. Davydov
    V. Paulauskas
    A. Račkauskas
    Journal of Theoretical Probability, 2000, 13 : 39 - 64
  • [28] A class of P-stable linear multistep numerical methods
    Fatunla, SO
    Ikhile, MNO
    Otunta, FO
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1999, 72 (01) : 1 - 13
  • [30] NECESSARY CONDITIONS FOR SAMPLE BOUNDEDNESS OF P-STABLE PROCESSES
    TALAGRAND, M
    ANNALS OF PROBABILITY, 1988, 16 (04): : 1584 - 1595