Realisability of p-stable fusion systems

被引:2
|
作者
Hethelyi, L. [1 ]
Szoke, M. [2 ]
机构
[1] Budapest Univ Technol & Econ, Dept Algebra, Budapest, Hungary
[2] Obuda Univ, Inst Appl Math, John von Neumann Fac Informat, Budapest, Hungary
关键词
Saturated fusion systems; Soluble fusion systems; p-stability; Realisable fusion systems; Characteristic p-functors; SUBGROUP;
D O I
10.1016/j.jalgebra.2018.11.029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to investigate p-stable fusion systems, where p is an odd prime. We examine realisable fusion systems and prove a generalisation of a result of G. Glauberman. Then we prove that p-stability is determined by the normaliser systems of centric radical subgroups. Finally, we prove that all p-stable fusion systems are realisable provided there exists a stable p-functor. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:247 / 256
页数:10
相关论文
共 50 条
  • [11] Totally P-Stable Abelian Groups
    E. A. Palyutin
    Algebra and Logic, 2015, 54 : 296 - 315
  • [12] A generator of P-stable hybrid methods
    Avdelas, G
    Simos, TE
    INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED PROCESSING TECHNIQUES AND APPLICATIONS, VOLS I-V, PROCEEDINGS, 1999, : 265 - 271
  • [13] A CHARACTERISTIC SUBGROUP OF A P-STABLE GROUP
    GLAUBERMAN, G
    CANADIAN JOURNAL OF MATHEMATICS, 1968, 20 (05): : 1101 - +
  • [14] Totally P-Stable Abelian Groups
    Palyutin, E. A.
    ALGEBRA AND LOGIC, 2015, 54 (04) : 296 - 315
  • [15] P-STABLE MODIFICATION OF THE NUMEROV METHOD
    SHAH, SA
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1988, 16 (12) : 1041 - 1043
  • [16] Expressing p-stable semantics based on stable semantics
    Osorio, Mauricio
    Luis Carballido, Jose
    Zepeda, Claudia
    20TH INTERNATIONAL CONFERENCE ON ELECTRONICS COMMUNICATIONS AND COMPUTERS (CONIELECOMP 2010), 2010, : 227 - 231
  • [17] ON SUBSETS OF LP AND P-STABLE PROCESSES
    TALAGRAND, M
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1989, 25 (02): : 153 - 166
  • [18] Betti numbers for p-stable ideals
    Ene, V
    Pfister, G
    Popescu, D
    COMMUNICATIONS IN ALGEBRA, 2000, 28 (03) : 1515 - 1531
  • [19] P-stable models of strong kernel programs
    Zepeda, Claudia
    Luis Carballido, Jose
    JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 2009, 64 (01): : 41 - 50
  • [20] A new characteristic subgroup of a p-stable group
    Glauberman, George
    Solomon, Ronald
    JOURNAL OF ALGEBRA, 2012, 368 : 231 - 236