Tunable metamaterial structures and slow light effects using plasmon induced transparency

被引:0
|
作者
Jahromy, S. Izadshenas [1 ]
Zakery, A. [1 ]
机构
[1] Shiraz Univ, Dept Phys, Coll Sci, Shiraz 7194684795, Iran
关键词
component; Plasmon Induced Transparency; Graphene; Sensor; Metamaterial; ELECTROMAGNETICALLY INDUCED TRANSPARENCY; GRAPHENE; ANALOG;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a dynamically frequency tunable plasmon induced transparency(PIT) in metamaterial devices composed of a graphene nanostructure for the terahertz (1-10 THz) region. The most common way to get a PIT effect is creating the coupling between bright and dark modes. Graphene show unusual behavior that enables new tunable plasmonic metamaterials and applications in terahertz frequency range. The PIT resonant frequency can be dynamically tuned by varying the gate voltage applied to the graphene without re-fabrication the nanostructures. A metamaterial sensor based on these coupling effects yields a sensitivity of 8152 nm/RIU. PIT has been demonstrated to be able to greatly slow down the speed of light. Slow light is important for routing optical information. In the vicinity of the PIT transparent peak it offers a large positive group Index, suggesting slow light. At the transparent peak, the group Index is 278.7. These features show remarkable potential for slow light devices, optical sensing and switching in metamaterials.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Tunable plasmon-induced transparency and slow light in a metamaterial with graphene
    Ruan, Banxian
    Xiong, Cuixiu
    Liu, Chao
    Li, Min
    Wu, Kuan
    Li, Hongjian
    [J]. RESULTS IN PHYSICS, 2020, 19
  • [2] Polarization independent and tunable plasmon induced transparency for slow light
    Yang, Hanning
    Owiti, Edgar
    Pei, Yanbo
    Li, Siren
    Liu, Peng
    Sun, Xiudong
    [J]. RSC ADVANCES, 2017, 7 (31): : 19169 - 19173
  • [3] Plasmon-Induced Transparency and Dispersionless Slow Light in a Novel Metamaterial
    Song, Jiakun
    Liu, Jietao
    Song, Yuzhi
    Li, Kangwen
    Zhang, Zuyin
    Xu, Yun
    Wei, Xin
    Song, Guofeng
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2015, 27 (11) : 1177 - 1180
  • [4] Slow-light analysis based on tunable plasmon-induced transparency in patterned black phosphorus metamaterial
    Wu Kuan
    Li Hongjian
    Liu Chao
    Xiong Cuixiu
    Ruan Banxian
    Li Min
    Gao Enduo
    Zhang Baihui
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2021, 38 (03) : 412 - 418
  • [5] Absorption and slow-light analysis based on tunable plasmon-induced transparency in patterned graphene metamaterial
    Zhang, Baihui
    Li, Hongjian
    Xu, Hui
    Zhao, Mingzhuo
    Xiong, Cuixiu
    Liu, Chao
    Wu, Kuan
    [J]. OPTICS EXPRESS, 2019, 27 (03) : 3598 - 3608
  • [6] Tunable plasmon induced transparency and slow light based on graphene metamaterials
    Luo, Shiwen
    Li, Bin
    Gao, Jun
    Yu, Anlan
    Xiong, Dongsheng
    Wang, Xinbing
    Zuo, Duluo
    [J]. PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES XXV, 2017, 10098
  • [7] Tunable dual plasmon-induced transparency and slow-light analysis based on monolayer patterned graphene metamaterial
    Yao, Pengju
    Zeng, Biao
    Gao, Enduo
    Zhang, Hao
    Liu, Chao
    Li, Min
    Li, Hongjian
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2022, 55 (15)
  • [8] Dual dynamically tunable plasmon-induced transparency in H-type-graphene-based slow-light metamaterial
    Gao, Enduo
    Liu, Zhimin
    Li, Hongjian
    Xu, Hui
    Zhang, Zhenbin
    Zhang, Xiao
    Luo, Xin
    Xiong, Cuixiu
    Liu, Chao
    Zhang, Baihui
    Zhou, Fengqi
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2019, 36 (08) : 1306 - 1311
  • [9] A tunable metamaterial based on plasmon-induced transparency effect
    Fanzheng Zeng
    Min Zhong
    [J]. Optical and Quantum Electronics, 2021, 53
  • [10] A tunable metamaterial based on plasmon-induced transparency effect
    Zeng, Fanzheng
    Zhong, Min
    [J]. OPTICAL AND QUANTUM ELECTRONICS, 2021, 53 (01)