Dual dynamically tunable plasmon-induced transparency in H-type-graphene-based slow-light metamaterial

被引:26
|
作者
Gao, Enduo [1 ]
Liu, Zhimin [1 ,2 ]
Li, Hongjian [3 ]
Xu, Hui [3 ]
Zhang, Zhenbin [1 ]
Zhang, Xiao [1 ]
Luo, Xin [1 ]
Xiong, Cuixiu [3 ]
Liu, Chao [3 ]
Zhang, Baihui [3 ]
Zhou, Fengqi [1 ]
机构
[1] East China Jiaotong Univ, Sch Sci, Nanchang 330013, Jiangxi, Peoples R China
[2] Ohio State Univ, Dept Mat Sci & Engn, 2041 Coll Rd, Columbus, OH 43210 USA
[3] Cent S Univ, Scool Phys & Elect, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
ELECTROMAGNETICALLY INDUCED TRANSPARENCY; WAVE-GUIDE; OPTICS; ABSORPTION;
D O I
10.1364/JOSAA.36.001306
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
An H-type-graphene-based slow-light metamaterial is proposed to produce a dual plasmon-induced transparency phenomenon, which can be effectively modulated by Fermi level, carrier mobility of graphene, and the medium environment. The data calculated by coupled mode theory and results of numerical simulation show prominent agreement. In addition, both the simplicity and continuity of the units of graphene-based metamaterial are extraordinary advantages. Furthermore, the slow-light characteristics of the proposed structure show that the group refractive index is as high as 237, which is more competitive than some other slow-light devices. (C) 2019 Optical Society of America
引用
收藏
页码:1306 / 1311
页数:6
相关论文
共 50 条
  • [1] Dual dynamically tunable plasmon-induced transparency and absorption in I-type-graphene-based slow-light metamaterial with rectangular defect
    Li, Yuhui
    Xu, Yiping
    Jiang, Jiabao
    Ren, Liyong
    Cheng, Shubo
    Wang, Bingchuan
    Zhou, Xianwen
    Wang, Ziyi
    [J]. OPTIK, 2021, 246
  • [2] Tunable dual plasmon-induced transparency and slow-light analysis based on monolayer patterned graphene metamaterial
    Yao, Pengju
    Zeng, Biao
    Gao, Enduo
    Zhang, Hao
    Liu, Chao
    Li, Min
    Li, Hongjian
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2022, 55 (15)
  • [3] Absorption and slow-light analysis based on tunable plasmon-induced transparency in patterned graphene metamaterial
    Zhang, Baihui
    Li, Hongjian
    Xu, Hui
    Zhao, Mingzhuo
    Xiong, Cuixiu
    Liu, Chao
    Wu, Kuan
    [J]. OPTICS EXPRESS, 2019, 27 (03) : 3598 - 3608
  • [4] Tunable plasmon-induced transparency and slow light in a metamaterial with graphene
    Ruan, Banxian
    Xiong, Cuixiu
    Liu, Chao
    Li, Min
    Wu, Kuan
    Li, Hongjian
    [J]. RESULTS IN PHYSICS, 2020, 19
  • [5] Investigation of tunable plasmon-induced transparency and slow-light effect based on graphene bands
    Zhao, Mingzhuo
    Xu, Hui
    Xiong, Cuixiu
    Zheng, Mingfei
    Zhang, Baihui
    Xie, Wenke
    Li, Hongjian
    [J]. APPLIED PHYSICS EXPRESS, 2018, 11 (08)
  • [6] Slow-light analysis based on tunable plasmon-induced transparency in patterned black phosphorus metamaterial
    Wu Kuan
    Li Hongjian
    Liu Chao
    Xiong Cuixiu
    Ruan Banxian
    Li Min
    Gao Enduo
    Zhang Baihui
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2021, 38 (03) : 412 - 418
  • [7] Dynamically tunable dual plasmon-induced transparency and absorption based on a single-layer patterned graphene metamaterial
    Gao, Enduo
    Liu, Zhimin
    Li, Hongjian
    Xu, Hui
    Zhang, Zhenbin
    Lu, Xin
    Xiong, Cuixiu
    Liu, Chao
    Zhang, Baihui
    Zhou, Fengqi
    [J]. OPTICS EXPRESS, 2019, 27 (10): : 13884 - 13894
  • [8] A Tunable Terahertz Graphene Metamaterial Sensor Based on Dual Polarized Plasmon-Induced Transparency
    Chen, Tao
    Liang, Dihan
    Jiang, Weijie
    [J]. IEEE SENSORS JOURNAL, 2022, 22 (14) : 14084 - 14090
  • [9] Dual plasmonically tunable slow light based on plasmon-induced transparency in planar graphene ribbon metamaterials
    Xu, Hui
    Zhao, Mingzhuo
    Xiong, Cuixiu
    Zhang, Baihui
    Zheng, Mingfei
    Zeng, Jianping
    Xia, Hui
    Li, Hongjian
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (40) : 25959 - 25966
  • [10] Dynamically Tunable Plasmon-Induced Transparency Based on an H-Shaped Graphene Resonator
    Xiang, Yulin
    Zhai, Xiang
    Lin, Qi
    Xia, Shengxuan
    Qin, Meng
    Wang, Lingling
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2018, 30 (07) : 622 - 625