Tunable plasmon-induced transparency and slow light in a metamaterial with graphene

被引:17
|
作者
Ruan, Banxian [1 ]
Xiong, Cuixiu [1 ]
Liu, Chao [1 ]
Li, Min [1 ]
Wu, Kuan [1 ]
Li, Hongjian [1 ]
机构
[1] Cent South Univ, Sch Phys & Elect, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
Plasmon-induced transparency; Graphene; Slow light device; ABSORPTION; PLATFORM; RIBBONS; OPTICS; MODE;
D O I
10.1016/j.rinp.2020.103382
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We proposed a metal grating-coupled graphene metamaterial in mid-IR frequency. An obvious plasmon-induced transparency (PIT) effect that can be tuned by Fermi energy of graphene has been achieved due to the coupling between two graphene surface plasmons. The physical origins of the tunable PIT effect are analyzed, and the influences of grating period and groove on the PIT effect are discussed. It is found that the amplitude and the width of the transparency window of PIT can be effectively modulated by grating period and groove respectively. Finally, the results are applied to the slow light, and a maximum group delay 0.4 ps can be achieved. We believe the designed structure may have a good application in slow light devices.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Absorption and slow-light analysis based on tunable plasmon-induced transparency in patterned graphene metamaterial
    Zhang, Baihui
    Li, Hongjian
    Xu, Hui
    Zhao, Mingzhuo
    Xiong, Cuixiu
    Liu, Chao
    Wu, Kuan
    [J]. OPTICS EXPRESS, 2019, 27 (03) : 3598 - 3608
  • [2] Tunable dual plasmon-induced transparency and slow-light analysis based on monolayer patterned graphene metamaterial
    Yao, Pengju
    Zeng, Biao
    Gao, Enduo
    Zhang, Hao
    Liu, Chao
    Li, Min
    Li, Hongjian
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2022, 55 (15)
  • [3] Plasmon-Induced Transparency and Dispersionless Slow Light in a Novel Metamaterial
    Song, Jiakun
    Liu, Jietao
    Song, Yuzhi
    Li, Kangwen
    Zhang, Zuyin
    Xu, Yun
    Wei, Xin
    Song, Guofeng
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2015, 27 (11) : 1177 - 1180
  • [4] Dual dynamically tunable plasmon-induced transparency in H-type-graphene-based slow-light metamaterial
    Gao, Enduo
    Liu, Zhimin
    Li, Hongjian
    Xu, Hui
    Zhang, Zhenbin
    Zhang, Xiao
    Luo, Xin
    Xiong, Cuixiu
    Liu, Chao
    Zhang, Baihui
    Zhou, Fengqi
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2019, 36 (08) : 1306 - 1311
  • [5] Graphene-based tunable terahertz plasmon-induced transparency metamaterial
    Zhao, Xiaolei
    Yuan, Cai
    Zhu, Lin
    Yao, Jianquan
    [J]. NANOSCALE, 2016, 8 (33) : 15273 - 15280
  • [6] Multi-frequency switch and excellent slow light based on tunable triple plasmon-induced transparency in bilayer graphene metamaterial
    Xianwen Zhou
    Yiping Xu
    Yuhui Li
    Shubo Cheng
    Zao Yi
    Guohui Xiao
    Ziyi Wang
    Zhanyu Chen
    [J]. Communications in Theoretical Physics, 2022, 74 (11) : 174 - 183
  • [7] Multi-frequency switch and excellent slow light based on tunable triple plasmon-induced transparency in bilayer graphene metamaterial *
    Zhou, Xianwen
    Xu, Yiping
    Li, Yuhui
    Cheng, Shubo
    Yi, Zao
    Xiao, Guohui
    Wang, Ziyi
    Chen, Zhanyu
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2022, 74 (11)
  • [8] Slow-light analysis based on tunable plasmon-induced transparency in patterned black phosphorus metamaterial
    Wu Kuan
    Li Hongjian
    Liu Chao
    Xiong Cuixiu
    Ruan Banxian
    Li Min
    Gao Enduo
    Zhang Baihui
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2021, 38 (03) : 412 - 418
  • [9] Tunable plasmon-induced transparency with coupled L-shape graphene metamaterial
    Chen, Shuxian
    Zeng, Liang
    Li, Jiaqi
    Weng, Jun
    Li, Junyi
    Guo, Zicong
    Xu, Pengbai
    Liu, Wenjie
    Yang, Jun
    Qin, Yuwen
    Wen, Kunhua
    [J]. RESULTS IN PHYSICS, 2022, 38
  • [10] Investigation of tunable plasmon-induced transparency and slow-light effect based on graphene bands
    Zhao, Mingzhuo
    Xu, Hui
    Xiong, Cuixiu
    Zheng, Mingfei
    Zhang, Baihui
    Xie, Wenke
    Li, Hongjian
    [J]. APPLIED PHYSICS EXPRESS, 2018, 11 (08)