Atrial Fibrillation Classification from a Short Single Lead ECG Recording Using Hierarchical Classifier

被引:12
|
作者
Coppola, Erin E. [1 ]
Gyawali, Prashnna K. [1 ]
Vanjara, Nihar [1 ]
Giaime, Daniel [1 ]
Wang, Linwei [1 ]
机构
[1] Rochester Inst Technol, Rochester, NY 14623 USA
来源
关键词
RATE-INDEPENDENT DETECTION;
D O I
10.22489/CinC.2017.354-425
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Atrial fibrillation (AF), one of the most common cardiac arrhythmias, can be diagnosed using electrocardiography. We present a data-driven model to automatically detect the occurrence of atrial fibrillation on a single lead electrocardiogram (ECG). Our model incorporates a wide range of features including heart rate variability in the time and frequency domain, spectral power analysis and statistical modeling of atrial activity. We use an over-sampling strategy to balance the dataset across different categories. We design a hierarchical classification model to predict an ECG signal as either AF, normal, noisy or an alternative rhythm. The best performance was achieved with a hierarchical bagged ensemble classifier, with an average F1 score of 0.7855 over all samples.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Detection of Atrial Fibrillation Using 12-Lead ECG for Mobile Applications
    dos Santos Couceiro, Ricardo Jorge
    Carvalho, Paulo
    Henriques, Jorge
    Paiva, Rui
    Antunes, Manuel Jesus
    INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS, 2019, 64 : 205 - 210
  • [42] Short Single-Lead ECG Signal Delineation-Based Deep Learning: Implementation in Automatic Atrial Fibrillation Identification
    Tutuko, Bambang
    Rachmatullah, Muhammad Naufal
    Darmawahyuni, Annisa
    Nurmaini, Siti
    Tondas, Alexander Edo
    Passarella, Rossi
    Partan, Radiyati Umi
    Rifai, Ahmad
    Sapitri, Ade Iriani
    Firdaus, Firdaus
    SENSORS, 2022, 22 (06)
  • [43] Detection of Atrial Fibrillation Episodes from Short Single Lead Recordings by Means of Ensemble Learning
    Bonizzi, Pietro
    Driessens, Kurt
    Karel, Joel
    2017 COMPUTING IN CARDIOLOGY (CINC), 2017, 44
  • [44] Automated Classification of Coronary Atherosclerosis Using Single Lead ECG
    Kaveh, Anthony
    Chung, Wayne
    2013 IEEE CONFERENCE ON WIRELESS SENSOR (ICWISE), 2013, : 108 - 113
  • [45] Accurate detection of atrial fibrillation from 12-lead ECG using deep neural network
    Cai, Wenjuan
    Chen, Yundai
    Guo, Jun
    Han, Baoshi
    Shi, Yajun
    Ji, Lei
    Wang, Jinliang
    Zhang, Guanglei
    Luo, Jianwen
    COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 116
  • [46] Detection of Atrial Fibrillation in ECG Hand-held Devices Using a Random Forest Classifier
    Zabihi, Morteza
    Rad, Ali Bahrami
    Katsaggelos, Aggelos K.
    Kiranyaz, Serkan
    Narkilahti, Susanna
    Gabbouj, Moncef
    2017 COMPUTING IN CARDIOLOGY (CINC), 2017, 44
  • [47] Classification of Atrial Fibrillation ECG Signals Using 2D CNN
    Tihak, Amina
    Smajlovic, Lejla
    Boskovic, Dusanka
    MEDICON 2023 AND CMBEBIH 2023, VOL 1, 2024, 93 : 57 - 65
  • [48] Overview on prediction, detection, and classification of atrial fibrillation using wavelets and AI on ECG
    Serhal, Hassan
    Abdallah, Nassib
    Marion, Jean-Marie
    Chauvet, Pierre
    Oueidat, Mohamad
    Humeau-Heurtier, Anne
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 142
  • [49] Smart Medicare Record for Classification of ECG for Atrial Fibrillation using NFC card
    Sisodia, Yashanjali
    Wagh, Kishor
    2017 2ND INTERNATIONAL CONFERENCE ON TELECOMMUNICATION AND NETWORKS (TEL-NET), 2017, : 414 - 419
  • [50] Feature and classifier fusion for 12-lead ECG classification
    Nugent, CD
    Webb, JAC
    Black, ND
    MEDICAL INFORMATICS AND THE INTERNET IN MEDICINE, 2000, 25 (03): : 225 - 235