Atrial Fibrillation Classification from a Short Single Lead ECG Recording Using Hierarchical Classifier

被引:12
|
作者
Coppola, Erin E. [1 ]
Gyawali, Prashnna K. [1 ]
Vanjara, Nihar [1 ]
Giaime, Daniel [1 ]
Wang, Linwei [1 ]
机构
[1] Rochester Inst Technol, Rochester, NY 14623 USA
来源
关键词
RATE-INDEPENDENT DETECTION;
D O I
10.22489/CinC.2017.354-425
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Atrial fibrillation (AF), one of the most common cardiac arrhythmias, can be diagnosed using electrocardiography. We present a data-driven model to automatically detect the occurrence of atrial fibrillation on a single lead electrocardiogram (ECG). Our model incorporates a wide range of features including heart rate variability in the time and frequency domain, spectral power analysis and statistical modeling of atrial activity. We use an over-sampling strategy to balance the dataset across different categories. We design a hierarchical classification model to predict an ECG signal as either AF, normal, noisy or an alternative rhythm. The best performance was achieved with a hierarchical bagged ensemble classifier, with an average F1 score of 0.7855 over all samples.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Prediction of atrial fibrillation from at-home single-lead ECG signals without arrhythmias
    Gadaleta, Matteo
    Harrington, Patrick
    Barnhill, Eric
    Hytopoulos, Evangelos
    Turakhia, Mintu P.
    Steinhubl, Steven R.
    Quer, Giorgio
    NPJ DIGITAL MEDICINE, 2023, 6 (01)
  • [32] Dual-Channel Neural Network for Atrial Fibrillation Detection From a Single Lead ECG Wave
    Fang, Bo
    Chen, Junxin
    Liu, Yu
    Wang, Wei
    Wang, Ke
    Singh, Amit Kumar
    Lv, Zhihan
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (05) : 2296 - 2305
  • [33] Prediction of atrial fibrillation from at-home single-lead ECG signals without arrhythmias
    Matteo Gadaleta
    Patrick Harrington
    Eric Barnhill
    Evangelos Hytopoulos
    Mintu P. Turakhia
    Steven R. Steinhubl
    Giorgio Quer
    npj Digital Medicine, 6
  • [34] Survey on atrial fibrillation detection from a single-lead ECG wave for Internet of Medical Things
    Liu, Yu
    Chen, Junxin
    Bao, Nan
    Gupta, Brij B.
    Lv, Zhihan
    COMPUTER COMMUNICATIONS, 2021, 178 : 245 - 258
  • [35] Multiscale convolutional neural network for detecting paroxysmal atrial fibrillation from single lead ECG signals
    Prabhakararao, Eedara
    Dandapat, Samarendra
    PROCEEDINGS OF 2020 IEEE APPLIED SIGNAL PROCESSING CONFERENCE (ASPCON 2020), 2020, : 339 - 343
  • [36] Detection of Atrial Fibrillation from Single Lead ECG Signal Using Multirate Cosine Filter Bank and Deep Neural Network
    Ghosh, S. K.
    Tripathy, R. K.
    Paternina, Mario R. A.
    Arrieta, Juan J.
    Zamora-Mendez, Alejandro
    Naik, Ganesh R.
    JOURNAL OF MEDICAL SYSTEMS, 2020, 44 (06)
  • [37] Detection of Atrial Fibrillation from Single Lead ECG Signal Using Multirate Cosine Filter Bank and Deep Neural Network
    S. K. Ghosh
    R. K. Tripathy
    Mario R. A. Paternina
    Juan J. Arrieta
    Alejandro Zamora-Mendez
    Ganesh R. Naik
    Journal of Medical Systems, 2020, 44
  • [38] Six-lead device superior to single-lead smartwatch ECG in atrial fibrillation detection
    Scholten, Josca
    Jansen, Ward P. J.
    Horsthuis, Thomas
    Mahes, Anuska D.
    Winter, Michiel M.
    Zwinderman, Aeilko H.
    Keijer, Jan T.
    Minneboo, Madelon
    de Groot, Joris R.
    Bokma, Jouke P.
    AMERICAN HEART JOURNAL, 2022, 253 : 53 - 58
  • [39] Detection of atrial fibrillation and other abnormal rhythms from ECG using a multi-layer classifier architecture
    Mukherjee, Ayan
    Choudhury, Anirban Dutta
    Datta, Shreyasi
    Puri, Chetanya
    Banerjee, Rohan
    Singh, Rituraj
    Ukil, Arijit
    Bandyopadhyay, Soma
    Pal, Arpan
    Khandelwal, Sundeep
    PHYSIOLOGICAL MEASUREMENT, 2019, 40 (05)
  • [40] The role of single-lead ECG in screening for atrial fibrillation deserves more attention
    Dong, Zhenyu
    Yusup, Muyassar
    Lu, Yanmei
    Tang, Baopeng
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2022, 348 : 75 - 75