LIMIT CYCLE BIFURCATIONS OF SOME LIENARD SYSTEMS WITH A NILPOTENT CUSP

被引:14
|
作者
Yang, Junmin [1 ]
Han, Maoan [1 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
来源
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
Limit cycle; Lienard system; cusp; nilpotent singular point; NEAR-HAMILTONIAN SYSTEMS; NUMBER;
D O I
10.1142/S0218127410028045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the number of limit cycles of a kind of polynomial Lienard system with a nilpotent cusp and obtain some new results on the lower bound of the maximal number of limit cycles for this kind of systems.
引用
收藏
页码:3829 / 3839
页数:11
相关论文
共 50 条
  • [21] Bifurcations of a limit cycle in nonlinear dynamic systems
    Nikitina N.V.
    International Applied Mechanics, 2009, 45 (09) : 1023 - 1032
  • [22] NUMBER OF LIMIT CYCLES OF SOME POLYNOMIAL LIENARD SYSTEMS
    Xu, Weijiao
    Li, Cuiping
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (04):
  • [23] On the uniqueness of limit cycle for certain Lienard systems without symmetry
    Hayashi, Makoto
    Villari, Gabriele
    Zanolin, Fabio
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2018, (55) : 1 - 10
  • [24] Bifurcation curves of limit cycles in some Lienard systems
    López-Ruiz, R
    López, JL
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2000, 10 (05): : 971 - 980
  • [25] The Dynamics of a Kind of Lienard System with Sixth Degree and Its Limit Cycle Bifurcations Under Perturbations
    Han, Maoan
    Yang, Junmin
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2020, 19 (01)
  • [26] BIFURCATIONS OF CANARD LIMIT CYCLES IN SEVERAL SINGULARLY PERTURBED GENERALIZED POLYNOMIAL LIENARD SYSTEMS
    Shen, Jianhe
    Han, Maoan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (07) : 3085 - 3108
  • [27] Limit Cycle Bifurcations Near a Heteroclinic Loop with Two Nilpotent Cusps of General Order
    Yang, Junmin
    Hu, Xing
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2022, 32 (06):
  • [28] Limit cycle bifurcations near a double homoclinic loop with a nilpotent saddle of order m
    Yang, Junmin
    Yu, Pei
    Han, Maoan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (01) : 455 - 492
  • [29] Limit Cycle Bifurcations from an Order-3 Nilpotent Center of Cubic Hamiltonian Systems Perturbed by Cubic Polynomials
    Zhang, Li
    Wang, Chenchen
    Hu, Zhaoping
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (09):
  • [30] Limit cycle bifurcations in polynomial models of dynamical systems
    Gaiko, VA
    PROGRESS IN ANALYSIS, VOLS I AND II, 2003, : 525 - 534