Bifurcation curves of limit cycles in some Lienard systems

被引:6
|
作者
López-Ruiz, R
López, JL
机构
[1] Univ Zaragoza, Fac Ciencias, Dept Fis Teor, E-50009 Zaragoza, Spain
[2] Univ Zaragoza, Fac Ciencias, Dept Matemat Aplicada, E-50009 Zaragoza, Spain
来源
关键词
D O I
10.1142/S0218127400000694
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Lienard systems of the form x + Ef(x)x + x = 0, with f(x) an even continuous function, are considered. The bifurcation curves of limit cycles are calculated exactly in the weak (epsilon --> 0) and in the strongly (epsilon --> infinity) nonlinear regime in some examples. The number of limit cycles does not increase when epsilon increases from zero to infinity in all the cases analyzed.
引用
收藏
页码:971 / 980
页数:10
相关论文
共 50 条
  • [1] Hopf Bifurcation of Limit Cycles in Some Piecewise Smooth Lienard Systems
    Xu, Weijiao
    Han, Maoan
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (12):
  • [2] Bifurcation of Limit Cycles for Some Lienard Systems with a Nilpotent Singular Point
    Yang, Junmin
    Sun, Xianbo
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (05):
  • [3] Algebraic approximations to bifurcation curves of limit cycles for the Lienard equation
    Giacomini, H
    Neukirch, S
    PHYSICS LETTERS A, 1998, 244 (1-3) : 53 - 58
  • [4] Hopf Bifurcation of Limit Cycles in Discontinuous Lienard Systems
    Xiong, Yanqin
    Han, Maoan
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [5] Limit cycles of some polynomial Lienard systems
    Xu, Weijiao
    Li, Cuiping
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 389 (01) : 367 - 378
  • [6] Bifurcation of Limit Cycles in Small Perturbation of a Class of Lienard Systems
    Sun, Xianbo
    Xi, Hongjian
    Zangeneh, Hamid R. Z.
    Kazemi, Rasool
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (01):
  • [7] Bifurcation of limit cycles and separatrix loops in singular Lienard systems
    Han, MA
    Bi, P
    Xiao, DM
    CHAOS SOLITONS & FRACTALS, 2004, 20 (03) : 529 - 546
  • [8] Invariant Algebraic Curves and Hyperelliptic Limit Cycles of Lienard Systems
    Qian, Xinjie
    Shen, Yang
    Yang, Jiazhong
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2021, 20 (02)
  • [9] NUMBER OF LIMIT CYCLES OF SOME POLYNOMIAL LIENARD SYSTEMS
    Xu, Weijiao
    Li, Cuiping
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (04):
  • [10] BIFURCATION OF LIMIT CYCLES IN A CLASS OF LIENARD SYSTEMS WITH A CUSP AND NILPOTENT SADDLE
    Zaghian, Ali
    Kazemi, Rasool
    Zangeneh, Hamid R. Z.
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2016, 78 (03): : 95 - 106