Low-pressure diffusion equilibrium of electronegative complex plasmas

被引:54
|
作者
Ostrikov, K
Denysenko, IB
Vladimirov, SV
Xu, S
Sugai, H
Yu, MY [1 ]
机构
[1] Ruhr Univ Bochum, D-44780 Bochum, Germany
[2] Nanyang Technol Univ, NIE, Plasma Sources & Applicat Ctr, Singapore 637616, Singapore
[3] Flinders Univ S Australia, Sch Chem Phys & Earth Sci, Adelaide, SA 5001, Australia
[4] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia
[5] Nagoya Univ, Dept Elect Engn, Nagoya, Aichi 4648603, Japan
[6] Kharkov Natl Univ, Sch Phys & Technol, UA-61077 Kharkov, Ukraine
来源
PHYSICAL REVIEW E | 2003年 / 67卷 / 05期
关键词
D O I
10.1103/PhysRevE.67.056408
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A self-consistent fluid theory of complex electronegative colloidal plasmas in parallel-plate low-pressure discharge is presented. The self-organized low-pressure diffusion equilibrium is maintained through sources and sinks of electrons, positive and negative ions, in plasmas containing dust grains. It is shown that the colloidal dust grain subsystem strongly affects the stationary state of the discharge by dynamically modifying the electron temperature and particle creation and loss processes. The model accounts for ionization, ambipolar diffusion, electron and ion collection by the dusts, electron attachment, positive-ion-negative-ion recombination, and relevant elastic and inelastic collisions. The spatial profiles of electron and positive-ion-negative-ion number densities, electron temperature, and dust charge in electronegative SiH4 discharges are obtained for different grain size, input power, neutral gas pressure, and rates of negative-ion creation and loss.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] NUMERICAL MODELING OF LOW-PRESSURE RF PLASMAS
    VENDER, D
    BOSWELL, RW
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 1990, 18 (04) : 725 - 732
  • [22] LOW-PRESSURE PLASMAS - A TECHNOLOGY AND ITS APPLICATIONS
    KRUSE, A
    VISSING, KD
    BAALMANN, A
    HENNECKE, M
    [J]. KUNSTSTOFFE-GERMAN PLASTICS, 1993, 83 (07): : 522 - 526
  • [23] SPECTROSCOPIC STUDIES OF LOW-PRESSURE PLASMAS IN NITROGEN
    KOCIAN, P
    [J]. HELVETICA PHYSICA ACTA, 1975, 48 (01): : 26 - 26
  • [24] MODELING OF LOW-PRESSURE REACTIVE RF PLASMAS
    WINKLER, R
    WILHELM, J
    [J]. PHYSICA SCRIPTA, 1988, T23 : 264 - 270
  • [25] Nitrogen dissociation in low-pressure microwave plasmas
    Tatarova, Elena
    Guerra, Vasco
    Henriques, Julio
    Ferreira, Carlos M.
    [J]. FIRST INTERNATIONAL WORKSHOP ON NONEQUILIBRIUM PROCESSES IN PLASMA PHYSICS AND STUDIES OF ENVIRONMENT, 2007, 71
  • [26] Electron cooling in decaying low-pressure plasmas
    Celik, Yusuf
    Tsankov, Tsanko V.
    Aramaki, Mitsutoshi
    Yoshimura, Shinji
    Luggenhoelscher, Dirk
    Czarnetzki, Uwe
    [J]. PHYSICAL REVIEW E, 2012, 85 (04):
  • [27] Generation and growth of nanoparticles in low-pressure plasmas
    Kortshagen, UR
    Bhandarkar, UV
    Swihart, MT
    Girshick, SL
    [J]. PURE AND APPLIED CHEMISTRY, 1999, 71 (10) : 1871 - 1877
  • [28] The effect of electron detachment on the diffusive decay of a low-pressure electronegative plasma
    Bogdanov, EA
    Kudryavtsev, AA
    Tsendin, LD
    [J]. TECHNICAL PHYSICS LETTERS, 2001, 27 (08) : 652 - 655
  • [29] Theoretical model of cylindrical Langmuir probe for low-pressure electronegative discharges
    Chung, T. H.
    Shin, Y. M.
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2007, 177 (1-2) : 127 - 127
  • [30] The effect of electron detachment on the diffusive decay of a low-pressure electronegative plasma
    E. A. Bogdanov
    A. A. Kudryavtsev
    L. D. Tsendin
    [J]. Technical Physics Letters, 2001, 27 : 652 - 655