Ground and Space-Based Measurement of Rocket Engine Burns in the Ionosphere

被引:51
|
作者
Bernhardt, P. A. [1 ]
Ballenthin, J. O. [2 ]
Baumgardner, J. L. [3 ]
Bhatt, A. [4 ]
Boyd, I. D. [5 ]
Burt, J. M. [5 ]
Caton, R. G. [2 ]
Coster, A. [4 ]
Erickson, P. J. [4 ]
Huba, J. D. [1 ]
Earle, G. D. [6 ]
Kaplan, C. R. [7 ]
Foster, J. C. [4 ]
Groves, K. M. [2 ]
Haaser, R. A. [6 ]
Heelis, R. A. [6 ]
Hunton, D. E. [2 ]
Hysell, D. L. [8 ]
Klenzing, J. H. [6 ]
Larsen, M. F. [9 ]
Lind, F. D. [4 ]
Pedersen, T. R. [2 ]
Pfaff, R. F. [10 ]
Stoneback, R. A. [6 ]
Roddy, P. A. [2 ]
Rodriquez, S. P. [11 ]
San Antonio, G. S. [11 ]
Schuck, P. W. [10 ]
Siefring, C. L. [1 ]
Selcher, C. A. [2 ]
Smith, S. M. [3 ]
Talaat, E. R. [12 ]
Thomason, J. F. [11 ]
Tsunoda, R. T. [13 ]
Varney, R. H. [8 ]
机构
[1] USN, Res Lab, Div Plasma Phys, Washington, DC 20374 USA
[2] USAF, Res Lab, Kirtland AFB, NM 87117 USA
[3] Boston Univ, Ctr Space Phys, Boston, MA 02215 USA
[4] MIT, Haystack Observ, Westford, MA 01886 USA
[5] Univ Michigan, Ann Arbor, MI 48109 USA
[6] Univ Texas Dallas, Richardson, TX 75080 USA
[7] USN, Res Lab, Lab Computat Phys & Fluid Dynam, Washington, DC 20374 USA
[8] Cornell Univ, Ithaca, NY 14853 USA
[9] Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA
[10] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[11] USN, Res Lab, Div Radar, Washington, DC 20374 USA
[12] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA
[13] SRI Int, Menlo Pk, CA 94025 USA
基金
美国国家航空航天局; 美国国家科学基金会;
关键词
Environmental factors; ionosphere; plasma measurements; plasma waves; ATMOSPHERIC MODIFICATION EXPERIMENT; INCOHERENT-SCATTER; SHUTTLE EXHAUST; F-REGION; RELEASE; ARECIBO;
D O I
10.1109/TPS.2012.2185814
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
On-orbit firings of both liquid and solid rocket motors provide localized disturbances to the plasma in the upper atmosphere. Large amounts of energy are deposited to ionosphere in the form of expanding exhaust vapors which change the composition and flow velocity. Charge exchange between the neutral exhaust molecules and the background ions (mainly O+) yields energetic ion beams. The rapidly moving pickup ions excite plasma instabilities and yield optical emissions after dissociative recombination with ambient electrons. Line-of-sight techniques for remote measurements rocket burn effects include direct observation of plume optical emissions with ground and satellite cameras, and plume scatter with UHF and higher frequency radars. Long range detection with HF radars is possible if the burns occur in the dense part of the ionosphere. The exhaust vapors initiate plasma turbulence in the ionosphere that can scatter HF radar waves launched from ground transmitters. Solid rocket motors provide particulates that become charged in the ionosphere and may excite dusty plasma instabilities. Hypersonic exhaust flow impacting the ionospheric plasma launches a low-frequency, electromagnetic pulse that is detectable using satellites with electric field booms. If the exhaust cloud itself passes over a satellite, in situ detectors measure increased ion-acoustic wave turbulence, enhanced neutral and plasma densities, elevated ion temperatures, and magnetic field perturbations. All of these techniques can be used for long range observations of plumes in the ionosphere. To demonstrate such long range measurements, several experiments were conducted by the Naval Research Laboratory including the Charged Aerosol Release Experiment, the Shuttle Ionospheric Modification with Pulsed Localized Exhaust experiments, and the Shuttle Exhaust Ionospheric Turbulence Experiments.
引用
收藏
页码:1267 / 1286
页数:20
相关论文
共 50 条
  • [41] Space-Based Gravitational-Wave Detectors: Development of Ground-Breaking Technologies for Future Space-Based Gravitational Gradiometers
    V. F. Fateev
    R. A. Davlatov
    Astronomy Reports, 2019, 63 : 699 - 709
  • [42] Space-Based Gravitational-Wave Detectors: Development of Ground-Breaking Technologies for Future Space-Based Gravitational Gradiometers
    Fateev, V. F.
    Davlatov, R. A.
    ASTRONOMY REPORTS, 2019, 63 (08) : 699 - 709
  • [43] Assessing the Effects of a Minor CIR-HSS Geomagnetic Storm on the Brazilian Low-Latitude Ionosphere: Ground and Space-Based Observations
    Chingarandi, F. S.
    Candido, C. M. N.
    Becker-Guedes, F.
    Jonah, O. F.
    Moraes-Santos, S. P.
    Klausner, V.
    Taiwo, O. O.
    SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2023, 21 (09):
  • [44] Combination of Ground- and Space-Based GPS Data for the Determination of a Multi-scale Regional 4-D Ionosphere Model
    Liang, Wenjing
    Limberger, Marco
    Schmidt, Michael
    Dettmering, Denise
    Hugentobler, Urs
    IAG 150 YEARS, 2016, 143 : 751 - 758
  • [45] Phoebe's orbit from ground-based and space-based observations
    Desmars, J.
    Li, S. N.
    Tajeddine, R.
    Peng, Q. Y.
    Tang, Z. H.
    ASTRONOMY & ASTROPHYSICS, 2013, 553
  • [46] CONTROL CHALLENGES FROM SPACE-BASED AND GROUND-BASED ASTRONOMICAL TELESCOPES
    REDDING, DC
    CONTROL ENGINEERING PRACTICE, 1994, 2 (03) : 469 - 478
  • [47] Coordinated Ground-Based and Space-Based Observations of Equatorial Plasma Bubbles
    Aa, Ercha
    Zou, Shasha
    Eastes, Richard
    Karan, Deepak K.
    Zhang, Shun-Rong
    Erickson, Philip J.
    Coster, Anthea J.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2020, 125 (01)
  • [48] Quantitative cross validation of space-based and ground-based radar observations
    Bolen, SM
    Chandrasekar, V
    JOURNAL OF APPLIED METEOROLOGY, 2000, 39 (12): : 2071 - 2079
  • [49] ROCKET MEASUREMENT OF ION AND NEUTRAL TEMPERATURES IN LOWER IONOSPHERE
    SASAKI, S
    KAWASHIMA, N
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1975, 80 (19): : 2824 - 2828
  • [50] Measurement of Information Superiority of Space-based Reconnaissance System Based on OSPA
    Jie, Long
    Sheng, Liu De
    2018 10TH INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CIRCUITS AND SYSTEMS (ICCCAS 2018), 2018, : 475 - 478