Ground and Space-Based Measurement of Rocket Engine Burns in the Ionosphere

被引:51
|
作者
Bernhardt, P. A. [1 ]
Ballenthin, J. O. [2 ]
Baumgardner, J. L. [3 ]
Bhatt, A. [4 ]
Boyd, I. D. [5 ]
Burt, J. M. [5 ]
Caton, R. G. [2 ]
Coster, A. [4 ]
Erickson, P. J. [4 ]
Huba, J. D. [1 ]
Earle, G. D. [6 ]
Kaplan, C. R. [7 ]
Foster, J. C. [4 ]
Groves, K. M. [2 ]
Haaser, R. A. [6 ]
Heelis, R. A. [6 ]
Hunton, D. E. [2 ]
Hysell, D. L. [8 ]
Klenzing, J. H. [6 ]
Larsen, M. F. [9 ]
Lind, F. D. [4 ]
Pedersen, T. R. [2 ]
Pfaff, R. F. [10 ]
Stoneback, R. A. [6 ]
Roddy, P. A. [2 ]
Rodriquez, S. P. [11 ]
San Antonio, G. S. [11 ]
Schuck, P. W. [10 ]
Siefring, C. L. [1 ]
Selcher, C. A. [2 ]
Smith, S. M. [3 ]
Talaat, E. R. [12 ]
Thomason, J. F. [11 ]
Tsunoda, R. T. [13 ]
Varney, R. H. [8 ]
机构
[1] USN, Res Lab, Div Plasma Phys, Washington, DC 20374 USA
[2] USAF, Res Lab, Kirtland AFB, NM 87117 USA
[3] Boston Univ, Ctr Space Phys, Boston, MA 02215 USA
[4] MIT, Haystack Observ, Westford, MA 01886 USA
[5] Univ Michigan, Ann Arbor, MI 48109 USA
[6] Univ Texas Dallas, Richardson, TX 75080 USA
[7] USN, Res Lab, Lab Computat Phys & Fluid Dynam, Washington, DC 20374 USA
[8] Cornell Univ, Ithaca, NY 14853 USA
[9] Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA
[10] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[11] USN, Res Lab, Div Radar, Washington, DC 20374 USA
[12] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA
[13] SRI Int, Menlo Pk, CA 94025 USA
基金
美国国家航空航天局; 美国国家科学基金会;
关键词
Environmental factors; ionosphere; plasma measurements; plasma waves; ATMOSPHERIC MODIFICATION EXPERIMENT; INCOHERENT-SCATTER; SHUTTLE EXHAUST; F-REGION; RELEASE; ARECIBO;
D O I
10.1109/TPS.2012.2185814
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
On-orbit firings of both liquid and solid rocket motors provide localized disturbances to the plasma in the upper atmosphere. Large amounts of energy are deposited to ionosphere in the form of expanding exhaust vapors which change the composition and flow velocity. Charge exchange between the neutral exhaust molecules and the background ions (mainly O+) yields energetic ion beams. The rapidly moving pickup ions excite plasma instabilities and yield optical emissions after dissociative recombination with ambient electrons. Line-of-sight techniques for remote measurements rocket burn effects include direct observation of plume optical emissions with ground and satellite cameras, and plume scatter with UHF and higher frequency radars. Long range detection with HF radars is possible if the burns occur in the dense part of the ionosphere. The exhaust vapors initiate plasma turbulence in the ionosphere that can scatter HF radar waves launched from ground transmitters. Solid rocket motors provide particulates that become charged in the ionosphere and may excite dusty plasma instabilities. Hypersonic exhaust flow impacting the ionospheric plasma launches a low-frequency, electromagnetic pulse that is detectable using satellites with electric field booms. If the exhaust cloud itself passes over a satellite, in situ detectors measure increased ion-acoustic wave turbulence, enhanced neutral and plasma densities, elevated ion temperatures, and magnetic field perturbations. All of these techniques can be used for long range observations of plumes in the ionosphere. To demonstrate such long range measurements, several experiments were conducted by the Naval Research Laboratory including the Charged Aerosol Release Experiment, the Shuttle Ionospheric Modification with Pulsed Localized Exhaust experiments, and the Shuttle Exhaust Ionospheric Turbulence Experiments.
引用
收藏
页码:1267 / 1286
页数:20
相关论文
共 50 条
  • [31] PROMINENCE SEISMOLOGY USING GROUND- AND SPACE-BASED OBSERVATIONS
    Ballester, J. L.
    Arregui, I.
    Oliver, R.
    Terradas, J.
    Soler, R.
    Lin, Y.
    Engvold, O.
    Langagen, O.
    van der Voort, L. H. M. Rouppe
    UNDERSTANDING SOLAR ACTIVITY: ADVANCES AND CHALLENGES, 2012, 55 : 169 - +
  • [32] Simultaneous ground- and space-based observations in the JWST era
    Conrad, Al
    Veillet, Christian
    OPTICAL AND INFRARED INTERFEROMETRY AND IMAGING VI, 2018, 10701
  • [33] Improved silver mirror coating for ground and space-based astronomy
    Sheikh, David A.
    ADVANCES IN OPTICAL AND MECHANICAL TECHNOLOGIES FOR TELESCOPES AND INSTRUMENTATION II, 2016, 9912
  • [34] NEON ground validation capabilities for airborne and space-based imagers
    McCorkel, Joel
    Kuester, Michele
    Johnson, Brian R.
    Kampe, Thomas U.
    EARTH OBSERVING SYSTEMS XVI, 2011, 8153
  • [35] Ground- and Space-Based Gamma-Ray Astronomy
    Funk, Stefan
    ANNUAL REVIEW OF NUCLEAR AND PARTICLE SCIENCE, VOL 65, 2015, 65 : 245 - +
  • [36] Advances in UV ground- and space-based measurements and modeling
    Slusser, J
    Gao, W
    McKenzie, R
    OPTICAL ENGINEERING, 2002, 41 (12) : 3006 - 3007
  • [37] The Heated Halo for Space-Based Blackbody Emissivity Measurement
    Gero, P. Jonathan
    Taylor, Joseph K.
    Best, Fred A.
    Revercomb, Henry E.
    Garcia, Raymond K.
    Knuteson, Robert O.
    Tobin, David C.
    Adler, Douglas P.
    Ciganovich, Nick N.
    MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL REMOTE SENSING TECHNOLOGY, TECHNIQUES AND APPLICATIONS IV, 2012, 8527
  • [38] Electronic design of space-based LCVR measurement system
    Huang Wei
    Lin Jia-ben
    Hou Jun-feng
    Zhang Yang
    Zhu Xiao-ming
    Deng Yuan-yong
    Wang Dong-guang
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2022, 37 (07) : 849 - 860
  • [39] Stellar activity and stellar pulsations in ground and space-based observations
    Paunzen, E.
    Bernhard, K.
    Huemmerich, S.
    CONTRIBUTIONS OF THE ASTRONOMICAL OBSERVATORY SKALNATE PLESO, 2018, 48 (01): : 66 - 72
  • [40] The problem of driving on Space - Rocket engine
    Pranjic, Kristina
    ZBORNIK MATICE SRPSKE ZA SLAVISTIKU-MATICA SRPSKA JOURNAL OF SLAVIC STUDIES, 2018, 94 : 179 - 183