Low-dose CT with deep learning regularization via proximal forward-backward splitting

被引:29
|
作者
Ding, Qiaoqiao [1 ]
Chen, Gaoyu [3 ,4 ,5 ]
Zhang, Xiaoqun [3 ,4 ]
Huang, Qiu [2 ]
Ji, Hui [1 ]
Gao, Hao [5 ]
机构
[1] Natl Univ Singapore, Dept Math, Singapore 119076, Singapore
[2] Shanghai Jiao Tong Univ, Sch Biomed Engn, Shanghai 200240, Peoples R China
[3] Shanghai Jiao Tong Univ, Inst Nat Sci, Shanghai 200240, Peoples R China
[4] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
[5] Emory Univ, Winship Canc Inst, Dept Radiat Oncol, Atlanta, GA 30322 USA
来源
PHYSICS IN MEDICINE AND BIOLOGY | 2020年 / 65卷 / 12期
关键词
x-ray CT; image reconstruction; low-dose CT; deep neural networks; CONE-BEAM CT; CONVOLUTIONAL NEURAL-NETWORK; RECONSTRUCTION METHOD; IMAGE-RECONSTRUCTION; COMPUTED-TOMOGRAPHY; PROJECTION DATA; REDUCTION; ALGORITHM;
D O I
10.1088/1361-6560/ab831a
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Low-dose x-ray computed tomography (LDCT) is desirable for reduced patient dose. This work develops new image reconstruction methods with deep learning (DL) regularization for LDCT. Our methods are based on the unrolling of a proximal forward-backward splitting (PFBS) framework with data-driven image regularization via deep neural networks. In contrast to PFBS-IR, which utilizes standard data fidelity updates via an iterative reconstruction (IR) method, PFBS-AIR involves preconditioned data fidelity updates that fuse the analytical reconstruction (AR) and IR methods in a synergistic way, i.e. fused analytical and iterative reconstruction (AIR). The results suggest that the DL-regularized methods (PFBS-IR and PFBS-AIR) provide better reconstruction quality compared to conventional methods (AR or IR). In addition, owing to the AIR, PFBS-AIR noticeably outperformed PFBS-IR and another DL-based postprocessing method, FBPConvNet.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Combined Low-dose Simulation and Deep Learning for CT Denoising: Application in Ultra-low-dose Chest CT
    Ahn, Chulkyun
    Heo, Changyong
    Kim, Jong Hyo
    INTERNATIONAL FORUM ON MEDICAL IMAGING IN ASIA 2019, 2019, 11050
  • [32] Robust Low-Dose CT Perfusion Deconvolution via Tensor Total-Variation Regularization
    Fang, Ruogu
    Zhang, Shaoting
    Chen, Tsuhan
    Sanelli, Pina C.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (07) : 1533 - 1548
  • [33] Sparsity regularized image super-resolution model via forward-backward operator splitting method
    Sun Y.-B.
    Fei X.
    Wei Z.-H.
    Xiao L.
    Zidonghua Xuebao/Acta Automatica Sinica, 2010, 36 (09): : 1232 - 1238
  • [34] Fused analytical and iterative reconstruction (AIR) via modified proximal forward-backward splitting: a FDK-based iterative image reconstruction example for CBCT
    Gao, Hao
    PHYSICS IN MEDICINE AND BIOLOGY, 2016, 61 (19): : 7187 - 7204
  • [35] A Review of deep learning methods for denoising of medical low-dose CT images
    Zhang, Ju
    Gong, Weiwei
    Ye, Lieli
    Wang, Fanghong
    Shangguan, Zhibo
    Cheng, Yun
    COMPUTERS IN BIOLOGY AND MEDICINE, 2024, 171
  • [36] Deep learning-based algorithms for low-dose CT imaging: A review
    Chen, Hongchi
    Li, Qiuxia
    Zhou, Lazhen
    Li, Fangzuo
    EUROPEAN JOURNAL OF RADIOLOGY, 2024, 172
  • [37] StatNet: Statistical Image Restoration for Low-Dose CT using Deep Learning
    Choi, Kihwan
    Lim, Joon Seok
    Kim, Sungwon Kim
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2020, 14 (06) : 1137 - 1150
  • [38] A Comparison Study of Deep Learning Designs for Improving Low-dose CT Denoising
    Wang, Vincent
    Wei, Alice
    Tan, Jiaxing
    Lu, Siming
    Cao, Weiguo
    Gao, Yongfeng
    MEDICAL IMAGING 2021: IMAGE PROCESSING, 2021, 11596
  • [39] Self-Supervised Deep Learning for Low-Dose CT Image Denoising
    Bai, T.
    Nguyen, D.
    Jiang, S.
    MEDICAL PHYSICS, 2020, 47 (06) : E658 - E658
  • [40] A Self-supervised Deep Learning Network for Low-Dose CT Reconstruction
    Liang, Kaichao
    Zhang, Li
    Yang, Yirong
    Yang, Hongkai
    Xing, Yuxiang
    2018 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE PROCEEDINGS (NSS/MIC), 2018,