Low-dose CT with deep learning regularization via proximal forward-backward splitting

被引:29
|
作者
Ding, Qiaoqiao [1 ]
Chen, Gaoyu [3 ,4 ,5 ]
Zhang, Xiaoqun [3 ,4 ]
Huang, Qiu [2 ]
Ji, Hui [1 ]
Gao, Hao [5 ]
机构
[1] Natl Univ Singapore, Dept Math, Singapore 119076, Singapore
[2] Shanghai Jiao Tong Univ, Sch Biomed Engn, Shanghai 200240, Peoples R China
[3] Shanghai Jiao Tong Univ, Inst Nat Sci, Shanghai 200240, Peoples R China
[4] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
[5] Emory Univ, Winship Canc Inst, Dept Radiat Oncol, Atlanta, GA 30322 USA
来源
PHYSICS IN MEDICINE AND BIOLOGY | 2020年 / 65卷 / 12期
关键词
x-ray CT; image reconstruction; low-dose CT; deep neural networks; CONE-BEAM CT; CONVOLUTIONAL NEURAL-NETWORK; RECONSTRUCTION METHOD; IMAGE-RECONSTRUCTION; COMPUTED-TOMOGRAPHY; PROJECTION DATA; REDUCTION; ALGORITHM;
D O I
10.1088/1361-6560/ab831a
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Low-dose x-ray computed tomography (LDCT) is desirable for reduced patient dose. This work develops new image reconstruction methods with deep learning (DL) regularization for LDCT. Our methods are based on the unrolling of a proximal forward-backward splitting (PFBS) framework with data-driven image regularization via deep neural networks. In contrast to PFBS-IR, which utilizes standard data fidelity updates via an iterative reconstruction (IR) method, PFBS-AIR involves preconditioned data fidelity updates that fuse the analytical reconstruction (AR) and IR methods in a synergistic way, i.e. fused analytical and iterative reconstruction (AIR). The results suggest that the DL-regularized methods (PFBS-IR and PFBS-AIR) provide better reconstruction quality compared to conventional methods (AR or IR). In addition, owing to the AIR, PFBS-AIR noticeably outperformed PFBS-IR and another DL-based postprocessing method, FBPConvNet.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] An unsupervised reconstruction method for low-dose CT using deep generative regularization prior
    Unal, Mehmet Ozan
    Ertas, Metin
    Yildirim, Isa
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 75
  • [22] Learning Deep Stochastic Optimal Control Policies using Forward-Backward SDEs
    Pereira, Marcus A.
    Wang, Ziyi
    Exarchos, Ioannis
    Theodorou, Evangelos A.
    ROBOTICS: SCIENCE AND SYSTEMS XV, 2019,
  • [23] Range-Doppler Imaging via Forward-Backward Sparse Bayesian Learning
    Tan, Xing
    Li, Jian
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (04) : 2421 - 2425
  • [24] Low-dose CT reconstruction via edge-preserving total variation regularization
    Tian, Zhen
    Jia, Xun
    Yuan, Kehong
    Pan, Tinsu
    Jiang, Steve B.
    PHYSICS IN MEDICINE AND BIOLOGY, 2011, 56 (18): : 5949 - 5967
  • [25] Global Solutions to the Complete Vehicle Energy Management Problem via Forward-Backward Operator Splitting
    Padilla, G. P.
    Belgioioso, G.
    Donkers, M. C. F.
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 6675 - 6680
  • [26] LUNG THORAX - Deep Learning Reconstruction of Low-dose CT Images
    Grawert, Stephanie
    ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 2024, 196 (08): : 783 - 784
  • [27] Low-temperature correlation functions via forward-backward quantum dynamics
    Chen, Jonathan
    Makri, Nancy
    CHEMICAL PHYSICS, 2010, 370 (1-3) : 15 - 19
  • [28] Research progress of deep learning in low-dose CT image denoising
    Zhang, Fan
    Liu, Jingyu
    Liu, Ying
    Zhang, Xinhong
    RADIATION PROTECTION DOSIMETRY, 2023, 199 (04) : 337 - 346
  • [29] DEEP LEARNING-BASED SINOGRAM COMPLETION FOR LOW-DOSE CT
    Ghani, Muhammad Usman
    Karl, W. Clem
    PROCEEDINGS 2018 IEEE 13TH IMAGE, VIDEO, AND MULTIDIMENSIONAL SIGNAL PROCESSING WORKSHOP (IVMSP), 2018,
  • [30] A proximal forward-backward splitting based algorithmic framework for Wasserstein logistic regression using heavy ball strategy
    Zhou, Bo
    Yuan, Yuefei
    Song, Qiankun
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2024, 55 (04) : 644 - 657