Maximum entropy reconstruction using derivative information .1. Fisher information and convex duality

被引:19
|
作者
Borwein, JM
Lewis, AS
Noll, D
机构
[1] UNIV WATERLOO,DEPT COMBINATOR & OPTIMIZAT,WATERLOO,ON N2L 3G1,CANADA
[2] UNIV TOULOUSE 3,DEPT MATH,F-31062 TOULOUSE,FRANCE
关键词
partially finite convex programming; duality; Fisher information; generalized solutions; maximum entropy method; optimal control; spectral density estimation;
D O I
10.1287/moor.21.2.442
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Maximum entropy spectral density estimation is a technique for reconstructing an unknown density function from some known measurements by maximizing a given measure of entropy of the estimate. Here we present a variety of new entropy measures which attempt to control derivative values of the densities. Our models apply among others to the inference problem based on the averaged Fisher information measure. The duality theory we develop resembles models used in convex optimal control problems. We present a variety of examples, including relaxed moment matching with Fisher information and best interpolation on a strip.
引用
收藏
页码:442 / 468
页数:27
相关论文
共 50 条
  • [31] Increasing Fisher information by Potential Isobaric Reconstruction
    Pan, Qiaoyin
    Pen, Ue-Li
    Inman, Derek
    Yu, Hao-Ran
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 469 (02) : 1968 - 1973
  • [32] Wave-Particle Duality via Quantum Fisher Information
    Niu, Chang
    Yu, Sixia
    CHINESE PHYSICS LETTERS, 2023, 40 (11)
  • [33] Wave-Particle Duality via Quantum Fisher Information
    牛畅
    郁司夏
    Chinese Physics Letters, 2023, 40 (11) : 16 - 20
  • [34] Naudts-like duality and the extreme Fisher information principle
    Chimento, LP
    Pennini, F
    Plastino, A
    PHYSICAL REVIEW E, 2000, 62 (05): : 7462 - 7465
  • [35] Wave-Particle Duality via Quantum Fisher Information
    牛畅
    郁司夏
    Chinese Physics Letters, 2023, (11) : 16 - 20
  • [36] Maximum Fisher information in mixed state quantum systems
    Luati, A
    ANNALS OF STATISTICS, 2004, 32 (04): : 1770 - 1779
  • [37] ASYMPTOTIC SAMPLING DISTRIBUTION FOR POLYNOMIAL CHAOS REPRESENTATION FROM DATA: A MAXIMUM ENTROPY AND FISHER INFORMATION APPROACH
    Das, Sonjoy
    Ghanem, Roger
    Spall, James C.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (05): : 2207 - 2234
  • [38] Measures of statistical dispersion based on Entropy and Fisher information
    Lubomir Kostal
    Petr Lansky
    Ondrej Pokora
    BMC Neuroscience, 12 (Suppl 1)
  • [39] Fisher-Renyi entropy product and information plane
    Romera, E.
    Nagy, A.
    PHYSICS LETTERS A, 2008, 372 (46) : 6823 - 6825
  • [40] Shannon entropy and Fisher information for screened Kratzer potential
    Amadi, Precious O.
    Ikot, Akpan N.
    Ngiangia, Alalibo T.
    Okorie, Uduakobong S.
    Rampho, Gaotsiwe J.
    Abdullah, Hewa Y.
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2020, 120 (14)