Maximum entropy reconstruction using derivative information .1. Fisher information and convex duality

被引:19
|
作者
Borwein, JM
Lewis, AS
Noll, D
机构
[1] UNIV WATERLOO,DEPT COMBINATOR & OPTIMIZAT,WATERLOO,ON N2L 3G1,CANADA
[2] UNIV TOULOUSE 3,DEPT MATH,F-31062 TOULOUSE,FRANCE
关键词
partially finite convex programming; duality; Fisher information; generalized solutions; maximum entropy method; optimal control; spectral density estimation;
D O I
10.1287/moor.21.2.442
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Maximum entropy spectral density estimation is a technique for reconstructing an unknown density function from some known measurements by maximizing a given measure of entropy of the estimate. Here we present a variety of new entropy measures which attempt to control derivative values of the densities. Our models apply among others to the inference problem based on the averaged Fisher information measure. The duality theory we develop resembles models used in convex optimal control problems. We present a variety of examples, including relaxed moment matching with Fisher information and best interpolation on a strip.
引用
收藏
页码:442 / 468
页数:27
相关论文
共 50 条
  • [21] Random dynamics, entropy production and Fisher information
    Garbaczewski, P
    ACTA PHYSICA POLONICA B, 2003, 34 (07): : 3555 - 3568
  • [22] On Shannon-Jaynes entropy and fisher information
    Dimitrov, Vesselin I.
    BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2007, 954 : 143 - 152
  • [23] Fisher information, Wehrl entropy, and Landau diamagnetism
    Curilef, S
    Pennini, F
    Plastino, A
    PHYSICAL REVIEW B, 2005, 71 (02)
  • [24] Asymptotic sampling distribution for polynomial chaos representation of data: A maximum entropy and fisher information approach
    Das, Sonjoy
    Ghanem, Roger
    Spall, James C.
    PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, : 4142 - +
  • [25] Combining categorical and continuous information using Bayesian maximum entropy
    Bogaert, P
    Wibrin, MA
    Geostatistics for Environmental Applications, Proceedings, 2005, : 15 - 26
  • [26] The maximum entropy production and maximum Shannon information entropy in enzyme kinetics
    Dobovisek, Andrej
    Markovic, Rene
    Brumen, Milan
    Fajmut, Ales
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 496 : 220 - 232
  • [27] Maximum Entropy Based IDS Using Header and Payload Information
    Erhan, Derya
    Harmanci, F. Kerem
    Anarim, Emin
    2009 IEEE 17TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, VOLS 1 AND 2, 2009, : 766 - 769
  • [28] Maximum entropy distributions with quantile information
    Bajgiran, Amirsaman H.
    Mardikoraem, Mahsa
    Soofi, Ehsan S.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2021, 290 (01) : 196 - 209
  • [29] Fusing probabilistic information on maximum entropy
    Kern-Isberner, G
    Rödder, W
    KI 2003: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2003, 2821 : 407 - 420
  • [30] Information Relaxations, Duality, and Convex Stochastic Dynamic Programs
    Brown, David B.
    Smith, James E.
    OPERATIONS RESEARCH, 2014, 62 (06) : 1394 - 1415