LOW MACH AND PECLET NUMBER LIMIT FOR A MODEL OF STELLAR TACHOCLINE AND UPPER RADIATIVE ZONES

被引:0
|
作者
Donatelli, Donatella [1 ]
Ducomet, Bernard [2 ]
Kobera, Marek [3 ]
Necasova, Sarka [4 ]
机构
[1] Univ Aquila, Dipartimento Ingn & Sci Informaz & Matemat, I-67100 Laquila, Italy
[2] CEA, DAM, DIF, F-91297 Arpajon, France
[3] Charles Univ Prague, Inst Math, Sokolovska 83, Prague 18575 8, Czech Republic
[4] Acad Sci Czech Republic, Inst Math, Zitna 25, CR-11567 Prague 1, Czech Republic
关键词
Navier-Stokes-Fourier-Poisson system; radiation transfer; compressible magnetohydrodynamics; rotation; stellar radiative zone; weak solution; elliptic-parabolic initial boundary value problem; vanishing Peclet number; vanishing Mach number; vanishing Alfven number; classical physics; plasma; COMPRESSIBLE MAGNETOHYDRODYNAMIC EQUATIONS; FLOWS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a hydrodynamical model describing the motion of internal stellar layers based on compressible Navier-Stokes-Fourier-Poisson system. We suppose that the medium is electrically charged, we include energy exchanges through radiative transfer and we assume that the system is rotating. We analyze the singular limit of this system when the Mach number, the Alfven number, the Peclet number and the Froude number approache zero in a certain way and prove convergence to a 3D incompressible MHD system with a stationary linear transport equation for transport of radiation intensity. Finally, we show that the energy equation reduces to a steady equation for the temperature corrector.
引用
收藏
页数:31
相关论文
共 50 条
  • [41] Low Mach number limit of the compressible Euler–Cattaneo–Maxwell equations
    Fucai Li
    Shuxing Zhang
    Zhipeng Zhang
    Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [42] Low Mach number limit of multidimensional steady flows on the airfoil problem
    Mingjie Li
    Tian-Yi Wang
    Wei Xiang
    Calculus of Variations and Partial Differential Equations, 2020, 59
  • [43] Low Mach Number Limit of Solutions to the Stochastic Compressible Magnetohydrodynamic Equations
    Huaqiao Wang
    Journal of Dynamics and Differential Equations, 2023, 35 : 2413 - 2451
  • [44] Low Mach number limit of the compressible Hall-magnetohydrodynamic system
    Yang, Xiuhui
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 25 : 118 - 126
  • [45] Low Mach number limit of viscous compressible flows in the whole space
    Desjardins, B
    Grenier, E
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1999, 455 (1986): : 2271 - 2279
  • [46] A LOW MACH NUMBER LIMIT OF A DISPERSIVE NAVIER-STOKES SYSTEM
    Levermore, C. David
    Sun, Weiran
    Trivisa, Konstantina
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (03) : 1760 - 1807
  • [47] Asymptotic single and multiple scale expansions in the low Mach number limit
    Meister, Andreas
    SIAM Journal on Applied Mathematics, 60 (01): : 256 - 271
  • [48] On the low Mach number limit of compressible flows in exterior moving domains
    Eduard Feireisl
    Ondřej Kreml
    Václav Mácha
    Šárka Nečasová
    Journal of Evolution Equations, 2016, 16 : 705 - 722
  • [49] Low Mach Number Limit of the Full Navier-Stokes Equations
    Thomas Alazard
    Archive for Rational Mechanics and Analysis, 2006, 180 : 1 - 73
  • [50] On the low Mach number limit of compressible flows in exterior moving domains
    Feireisl, Eduard
    Kreml, Ondrej
    Macha, Vaclav
    Necasova, Sarka
    JOURNAL OF EVOLUTION EQUATIONS, 2016, 16 (03) : 705 - 722