Low Mach number limit of multidimensional steady flows on the airfoil problem

被引:1
|
作者
Mingjie Li
Tian-Yi Wang
Wei Xiang
机构
[1] Minzu University of China,College of Science
[2] Wuhan University of Technology,Department of Mathematics, School of Science
[3] Gran Sasso Science Institute,undefined
[4] City University of Hong Kong,undefined
关键词
35Q31; 35L65; 76N15; 35B40;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we justify the low Mach number limit of the steady irrotational Euler flows for the airfoil problem, which is the first result for the low Mach number limit of the steady Euler flows in an exterior domain. The uniform estimates on the compressibility parameter ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}, which is singular for the flows, are established via a variational approach based on the compressible–incompressible difference functions. The limit is on the Hölder space and is unique. Moreover, the convergence rate is of order ε2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon ^2$$\end{document}. It is noticeable that, due to the feature of the airfoil problem, the extra force dominates the asymptotic decay rate of the compressible flow to the infinity. And the effect of extra force vanishes in the limiting process from compressible flows to the incompressible ones, as the Mach number goes to zero.
引用
收藏
相关论文
共 50 条
  • [1] Low Mach number limit of multidimensional steady flows on the airfoil problem
    Li, Mingjie
    Wang, Tian-Yi
    Xiang, Wei
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2020, 59 (02)
  • [2] Low Mach number limit of steady flows through infinite multidimensional largely-open nozzles
    Wang, Tian-Yi
    Zhang, Jiaojiao
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (03) : 1863 - 1903
  • [3] LOW MACH NUMBER LIMIT OF STEADY EULER FLOWS IN MULTI-DIMENSIONAL NOZZLES
    Li, Mingjie
    Wang, Tian-Yi
    Xiang, Wei
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2020, 18 (05) : 1191 - 1220
  • [4] Low Mach number limit for viscous compressible flows
    Danchin, R
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2005, 39 (03): : 459 - 475
  • [5] Low Mach number limit of viscous polytropic fluid flows
    Ou, Yaobin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (08) : 2037 - 2065
  • [6] LOW MACH NUMBER LIMIT OF VISCOUS COMPRESSIBLE MAGNETOHYDRODYNAMIC FLOWS
    Hu, Xianpeng
    Wang, Dehua
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2009, 41 (03) : 1272 - 1294
  • [7] LOW MACH NUMBER LIMIT AND FAR FIELD CONVERGENCE RATES OF IRROTATIONAL FLOWS IN MULTIDIMENSIONAL NOZZLES WITH AN OBSTACLE INSIDE
    Ma, Lei
    Wang, Tian-Yi
    Xie, Chunjing
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2023, 55 (01) : 36 - 67
  • [8] Effects of Mach Number and Specific Heat Ratio on Low-Reynolds-Number Airfoil Flows
    Anyoji, Masayuki
    Numata, Daiju
    Nagai, Hiroki
    Asai, Keisuke
    AIAA JOURNAL, 2015, 53 (06) : 1640 - 1654
  • [9] Low Mach number limit of viscous compressible flows in the whole space
    Desjardins, B
    Grenier, E
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1999, 455 (1986): : 2271 - 2279
  • [10] On the low Mach number limit of compressible flows in exterior moving domains
    Eduard Feireisl
    Ondřej Kreml
    Václav Mácha
    Šárka Nečasová
    Journal of Evolution Equations, 2016, 16 : 705 - 722