Low Mach number limit of multidimensional steady flows on the airfoil problem

被引:1
|
作者
Mingjie Li
Tian-Yi Wang
Wei Xiang
机构
[1] Minzu University of China,College of Science
[2] Wuhan University of Technology,Department of Mathematics, School of Science
[3] Gran Sasso Science Institute,undefined
[4] City University of Hong Kong,undefined
关键词
35Q31; 35L65; 76N15; 35B40;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we justify the low Mach number limit of the steady irrotational Euler flows for the airfoil problem, which is the first result for the low Mach number limit of the steady Euler flows in an exterior domain. The uniform estimates on the compressibility parameter ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}, which is singular for the flows, are established via a variational approach based on the compressible–incompressible difference functions. The limit is on the Hölder space and is unique. Moreover, the convergence rate is of order ε2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon ^2$$\end{document}. It is noticeable that, due to the feature of the airfoil problem, the extra force dominates the asymptotic decay rate of the compressible flow to the infinity. And the effect of extra force vanishes in the limiting process from compressible flows to the incompressible ones, as the Mach number goes to zero.
引用
收藏
相关论文
共 50 条
  • [21] Low Mach Number Limit of a Pressure Correction MAC Scheme for Compressible Barotropic Flows
    Herbin, Raphaele
    Latche, Jean-Claude
    Saleh, Khaled
    FINITE VOLUMES FOR COMPLEX APPLICATIONS VIII-METHODS AND THEORETICAL ASPECTS, FVCA 8, 2017, 199 : 255 - 263
  • [22] Low Mach number limit of viscous polytropic flows: Formal asymptotics in the periodic case
    Bresch, D
    Desjardins, B
    Grenier, E
    Lin, CK
    STUDIES IN APPLIED MATHEMATICS, 2002, 109 (02) : 125 - 149
  • [23] Low Mach number limit on thin domains
    Caggio, Matteo
    Donatelli, Donatella
    Necasova, Sarka
    Sun, Yongzhong
    NONLINEARITY, 2020, 33 (02) : 840 - 863
  • [24] LOW MACH NUMBER LIMIT ON EXTERIOR DOMAINS
    Donatelli, Donatella
    Marcati, Pierangelo
    ACTA MATHEMATICA SCIENTIA, 2012, 32 (01) : 164 - 176
  • [25] LOW MACH NUMBER LIMIT ON EXTERIOR DOMAINS
    Donatella Donatelli
    Pierangelo Marcati
    Acta Mathematica Scientia, 2012, 32 (01) : 164 - 176
  • [26] Low Mach number flows conference - Foreword
    Abgrall, R
    Guillard, H
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2005, 39 (03): : 437 - 437
  • [27] Low Mach Number Modeling of Stratified Flows
    Almgren, Ann
    Bell, John
    Nonaka, Andrew
    Zingale, Michael
    FINITE VOLUMES FOR COMPLEX APPLICATIONS VII - METHODS AND THEORETICAL ASPECTS, 2014, 77 : 3 - 15
  • [28] CALCULATION OF LOW MACH NUMBER REACTING FLOWS
    DWYER, HA
    NUMERICAL COMBUSTION, 1989, 351 : 65 - 81
  • [29] The mathematical theory of low Mach number flows
    Schochet, S
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2005, 39 (03): : 441 - 458
  • [30] An algorithm for low Mach number unsteady flows
    Mary, I
    Sagaut, P
    Deville, M
    SIXTEENTH INTERNATIONAL CONFERENCE ON NUMERICAL METHODS IN FLUID DYNAMICS, 1998, 515 : 308 - 313