Nanostructured hyaluronic acid-based hydrogels encapsulating synthetic/natural hybrid nanogels as promising wound dressings

被引:13
|
作者
Rusu, Alina Gabriela [1 ]
Chiriac, Aurica P. [1 ]
Nita, Loredana Elena [1 ]
Ghilan, Alina [1 ]
Rusu, Daniela [2 ]
Simionescu, Natalia [3 ]
Tartau, Liliana Mititelu [4 ]
机构
[1] Petru Poni Inst Macromol Chem, Nat Polymers Bioact & Biocompatible Mat Lab, 41AGr Ghica Voda Alley, Iasi 700487, Romania
[2] Petru Poni Inst Macromol Chem, Phys Polymers & Polymer Mat Lab, 41AGr Ghica Voda Alley, Iasi 700487, Romania
[3] Petru Poni Inst Macromol Chem, Ctr Adv Res Bionanoconjugates & Biopolymers, 41AGr Ghica Voda Alley, Iasi 700487, Romania
[4] GrigoreT Popa Univ Med & Pharm, Univ St 16, Iasi 700115, Romania
关键词
Nanostructured hydrogels; Nanogels; Drug delivery; Cell viability; Biocompatibility; IN-VITRO; RELEASE; SYSTEMS;
D O I
10.1016/j.bej.2022.108341
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Hydrogels with nanostructured morphology formed by embedding polymeric nanoparticles in a biodegradable polymer matrix have gained considerable interest in the medical field due to improved drug delivery profiles and tissue-mimicking architecture. Moreover, through hydrogels biodegradation, the encapsulated nanoparticles are released and can easily enter in different compartments of the body, thus having the potential to control the delivery of short half-life drugs. Therefore, this study was devoted to preparation and characterization of nanostructured hybrid hydrogels by incorporating well-defined maleoyl-chitosan/poly(aspartic acid) (MAC5/ PAS) nanogels into a polymer network based on thiolated hyaluronic acid (HASH) for wound dressings applications. The MAC5/PAS nanogels were used not only as nanocarriers for amoxicillin (Amox) encapsulation and control over its release through the HASH hydrogel network, but also as building blocks for hydrogel preparation. The obtained nanocomposite hydrogels exhibited a reduced swelling capacity and a controlled degradation rate in comparison with the non-filled HASH hydrogel. In vitro release profile revealed the influence of environment pH on Amox delivery, a rapid release of drug being observed at pH 5.4. Moreover, the in vitro and in vivo assays revealed a good biocompatibility of hydrogels, highlighting the potential of these systems as therapeutic scaffolds for dressing applications.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Utilization of hyaluronic acid-based hydrogels for neural stem cell engineering
    Ma, Weili
    Suh, Won
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [32] Synthesis and characterization of hyaluronic acid-based hydrogels for vocal fold regeneration
    Jia, XQ
    Kobler, J
    Clifton, RJ
    Jiao, T
    Zeitels, SM
    Langer, R
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 229 : U258 - U258
  • [33] Hyaluronic Acid-based Biomimetic Hydrogels for Tissue Engineering and Medical Applications
    An, Soohwan
    Choi, Soojeong
    Min, Sungjin
    Cho, Seung-Woo
    BIOTECHNOLOGY AND BIOPROCESS ENGINEERING, 2021, 26 (04) : 503 - 516
  • [34] Hyaluronic acid-based hydrogels: As an exosome delivery system in bone regeneration
    Deng, Huiling
    Wang, Jiecong
    An, Ran
    FRONTIERS IN PHARMACOLOGY, 2023, 14
  • [35] Hyaluronic acid-based dynamic and permissive hydrogels for tissue repair and regeneration
    Jia, Xinqiao
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [36] Hyaluronic Acid-based Biomimetic Hydrogels for Tissue Engineering and Medical Applications
    Soohwan An
    Soojeong Choi
    Sungjin Min
    Seung-Woo Cho
    Biotechnology and Bioprocess Engineering, 2021, 26 : 503 - 516
  • [37] Injectable Hyaluronic Acid-Based Hydrogels for Rapid Endoscopic Submucosal Dissection
    Qin, Geng
    Wu, Ruonan
    Wang, Qianqian
    Sun, Meizhou
    Li, Yang
    Duan, Shun
    Xu, Fu-Jian
    ACS Biomaterials Science and Engineering, 2024, 10 (12): : 7657 - 7666
  • [38] Designing functional hyaluronic acid-based hydrogels for cartilage tissue engineering
    Wang, Min
    Deng, Zexing
    Guo, Yi
    Xu, Peng
    MATERIALS TODAY BIO, 2022, 17
  • [39] Evaluation of Injectable Hyaluronic Acid-Based Hydrogels for Endodontic Tissue Regeneration
    Astudillo-Ortiz, Esteban
    Babo, Pedro S.
    Reis, Rui L.
    Gomes, Manuela E.
    MATERIALS, 2021, 14 (23)
  • [40] Hyaluronic acid-based nanocomposite hydrogels for ocular drug delivery applications
    Widjaja, Leonardus Kresna
    Bora, Meghali
    Chan, Paul Ng Poh Huat
    Lipik, Vitali
    Wong, Tina T. L.
    Venkatraman, Subbu S.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2014, 102 (09) : 3056 - 3065