Hyaluronic Acid-based Biomimetic Hydrogels for Tissue Engineering and Medical Applications

被引:0
|
作者
Soohwan An
Soojeong Choi
Sungjin Min
Seung-Woo Cho
机构
[1] Yonsei University,Department of Biotechnology
关键词
hyaluronic acid; biomimetic hydrogel; tissue engineering; biomedical applications;
D O I
暂无
中图分类号
学科分类号
摘要
Hyaluronic acid (HA), an essential component of extracellular matrix (ECM), plays an important role in various cellular activities, including migration, proliferation, and differentiation. Not only its structural and biological properties, but also properties such as biocompatibility, biodegradability, and low immunogenicity make HA a promising biomaterial for tissue engineering and regenerative medicine. HA has been widely utilized as a hydrogel to form complex polymer networks, which can be chemically modified owing to the abundance of functional groups. To closely recapitulate native tissues, many approaches have been developed through chemical modification, incorporation of various biomaterials and biomolecules based on biomimetics, and fabrication techniques. Thus, HA-based hydrogels can be designed to exhibit specific properties or functions for targeted tissues, capable of maintaining or replacing structural and biological properties. This review highlights recent efforts in developing HA-based hydrogels as ECM-mimetic scaffolds and bio-inspired functional biomaterials in the fields of tissue engineering and regenerative medicine as well as their medical applications.
引用
收藏
页码:503 / 516
页数:13
相关论文
共 50 条
  • [1] Hyaluronic Acid-based Biomimetic Hydrogels for Tissue Engineering and Medical Applications
    An, Soohwan
    Choi, Soojeong
    Min, Sungjin
    Cho, Seung-Woo
    [J]. BIOTECHNOLOGY AND BIOPROCESS ENGINEERING, 2021, 26 (04) : 503 - 516
  • [2] Recent Developments in Hyaluronic Acid-Based Hydrogels for Cartilage Tissue Engineering Applications
    Tsanaktsidou, Evgenia
    Kammona, Olga
    Kiparissides, Costas
    [J]. POLYMERS, 2022, 14 (04)
  • [3] A Review of Hyaluronic Acid and Hyaluronic Acid-based Hydrogels for Vocal Fold Tissue Engineering
    Walimbe, Tanaya
    Panitch, Alyssa
    Sivasankar, Preeti M.
    [J]. JOURNAL OF VOICE, 2017, 31 (04) : 416 - 423
  • [4] Tunable methacrylated hyaluronic acid-based hydrogels as scaffolds for soft tissue engineering applications
    Spearman, Benjamin S.
    Agrawal, Nikunj K.
    Rubiano, Andres
    Simmons, Chelsey S.
    Mobini, Sahba
    Schmidt, Christine E.
    [J]. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2020, 108 (02) : 279 - 291
  • [5] The Application of Hyaluronic Acid-Based Hydrogels in Bone and Cartilage Tissue Engineering
    Li, Hongru
    Qi, Zhiping
    Zheng, Shuang
    Chang, Yuxin
    Kong, Weijian
    Fu, Chuan
    Yu, Ziyuan
    Yang, Xiaoyu
    Pan, Su
    [J]. ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2019, 2019
  • [6] Designing functional hyaluronic acid-based hydrogels for cartilage tissue engineering
    Wang, Min
    Deng, Zexing
    Guo, Yi
    Xu, Peng
    [J]. MATERIALS TODAY BIO, 2022, 17
  • [7] Recent advances in hyaluronic acid-based hydrogels for 3D bioprinting in tissue engineering applications
    Ding, Yan-Wen
    Zhang, Xu-Wei
    Mi, Chen-Hui
    Qi, Xin-Ya
    Zhou, Jing
    Wei, Dai-Xu
    [J]. Smart Materials in Medicine, 2023, 4 : 59 - 68
  • [8] Hyaluronic acid-based scaffolds for tissue engineering
    Chircov, Cristina
    Grumezescu, Alexandru Mihai
    Bejenaru, Ludovic Everard
    [J]. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY, 2018, 59 (01): : 71 - 76
  • [9] Bioresorbable hyaluronic acid hydrogels for tissue engineering applications
    Bencherif, Sidi A.
    Srinivasan, Abiraman
    Jiang, Angela
    Hollinger, Jeffrey
    Matyjaszewski, Krzysztof
    Washburn, Newell R.
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2008, 236
  • [10] Hyaluronic acid-based supramolecular hydrogels for biomedical applications
    Mihajlovic, Marko
    Fermin, Liline
    Ito, Keita
    Van Nostrum, Cornelus F.
    Vermonden, Tina
    [J]. Multifunctional Materials, 2021, 4 (03):