PARAFERMION VERTEX OPERATOR ALGEBRAS AND W-ALGEBRAS

被引:21
|
作者
Arakawa, Tomoyuki [1 ]
Lam, Ching Hung [2 ]
Yamada, Hiromichi [3 ]
机构
[1] Kyoto Univ, Res Inst Math Sci, Kyoto 6068502, Japan
[2] Acad Sinica, Inst Math, Taipei 115, Taiwan
[3] Hitotsubashi Univ, Dept Math, Kunitachi, Tokyo 1868601, Japan
关键词
AFFINE; REPRESENTATIONS; DIMENSIONS; SYMMETRY; LEVEL;
D O I
10.1090/tran/7547
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the conjectural isomorphism between the level k (sl(2)) over cap -parafermion vertex operator algebra and the (k + 1, k + 2)-minimal series W-k-algebra for all k >= 2. As a consequence, we obtain the conjectural isomorphism between the (k + 1, k + 2)-minimal series W-k-algebra and the coset vertex operator algebra SU(k)(1) circle times SU(k)(1)/SU(k)(2).
引用
收藏
页码:4277 / 4301
页数:25
相关论文
共 50 条
  • [31] Modularity of Relatively Rational Vertex Algebras and Fusion Rules of Principal Affine W-Algebras
    Arakawa, Tomoyuki
    van Ekeren, Jethro
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 370 (01) : 205 - 247
  • [32] Fusion rules for ℤ2-orbifolds of affine and parafermion vertex operator algebras
    Cuipo Jiang
    Qing Wang
    [J]. Israel Journal of Mathematics, 2020, 240 : 837 - 887
  • [33] Quantum W-algebras and elliptic algebras
    Feigin, B
    Frenkel, E
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 178 (03) : 653 - 677
  • [34] Conformal embeddings of affine vertex algebras in minimal W-algebras I: Structural results
    Adamovic, Drazen
    Kac, Victor G.
    Frajria, Pierluigi Moeseneder
    Papi, Paolo
    Perse, Ozren
    [J]. JOURNAL OF ALGEBRA, 2018, 500 : 117 - 152
  • [35] FINITE W-ALGEBRAS
    TJIN, T
    [J]. PHYSICS LETTERS B, 1992, 292 (1-2) : 60 - 66
  • [36] A Lax type operator for quantum finite W-algebras
    Alberto De Sole
    Victor G. Kac
    Daniele Valeri
    [J]. Selecta Mathematica, 2018, 24 : 4617 - 4657
  • [37] A Lax type operator for quantum finite W-algebras
    De Sole, Alberto
    Kac, Victor G.
    Valeri, Daniele
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2018, 24 (05): : 4617 - 4657
  • [38] Trialities of W-algebras
    Creutzig, Thomas
    Linshaw, Andrew R.
    [J]. CAMBRIDGE JOURNAL OF MATHEMATICS, 2022, 10 (01) : 69 - 194
  • [39] On Rationality of W-algebras
    Victor G. Kac
    Minoru Wakimoto
    [J]. Transformation Groups, 2008, 13 : 671 - 713
  • [40] Yangians and W-algebras
    Briot, C
    Ragoucy, E
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2001, 127 (03) : 709 - 718