The graphs of projective codes

被引:6
|
作者
Kwiatkowski, Mariusz [1 ]
Pankov, Mark [1 ]
Pasini, Antonio [2 ]
机构
[1] Univ Warmia & Mazury, Fac Math & Comp Sci, Sloneczna 54, Olsztyn, Poland
[2] Univ Siena, Dept Informat Engn & Math, Via Roma 56, Siena, Italy
关键词
Linear code; Projective code; Simplex code; Grassmann graph; LINEAR CODES;
D O I
10.1016/j.ffa.2018.07.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider the Grassmann graph formed by k-dimensional subspaces of an n-dimensional vector space over the field of q elements (1 < k < n-1) and denote by II(n, k), the restriction of this graph to the set of projective [n, k](q) codes. In the case when q >= ((n)(2)), we show that the graph II(n, k)(q) is connected, its diameter is equal to the diameter of the Grassmann graph and the distance between any two vertices coincides with the distance between these vertices in the Grassmann graph. Also, we give some observations concerning the graphs of simplex codes. For example, binary simplex codes of dimension 3 are precisely maximal singular subspaces of a non-degenerate quadratic form. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:15 / 29
页数:15
相关论文
共 50 条
  • [41] Direct products in projective Segre codes
    Tochimani, Azucena
    Pinto, Maria Vaz
    Villarreal, Rafael H.
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2016, 39 : 96 - 110
  • [42] On the binary projective codes with dimension 6
    Bouyukliev, Iliya
    [J]. DISCRETE APPLIED MATHEMATICS, 2006, 154 (12) : 1693 - 1708
  • [43] Projective plane and planar quantum codes
    Freedman, MH
    Meyer, DA
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2001, 1 (03) : 325 - 332
  • [44] Linear codes from projective spaces
    Lavrauw, Michel
    Storme, Leo
    Van de Voorde, Geertrui
    [J]. ERROR-CORRECTING CODES, FINITE GEOMETRIES AND CRYPTOGRAPHY, 2010, 523 : 185 - 202
  • [45] Projective Plane and Planar Quantum Codes
    Michael H. Freedman
    David A. Meyer
    [J]. Foundations of Computational Mathematics, 2001, 1 : 325 - 332
  • [46] Codes on subgroups of weighted projective tori
    Sahin, Mesut
    Yayla, Oguz
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2024, 92 (05) : 1201 - 1218
  • [47] PROJECTIVE CODES MEETING THE GRIESMER BOUND
    HELLESETH, T
    [J]. DISCRETE MATHEMATICS, 1992, 106 : 265 - 271
  • [48] Optimal simplices and codes in projective spaces
    Cohn, Henry
    Kumar, Abhinav
    Minton, Gregory
    [J]. GEOMETRY & TOPOLOGY, 2016, 20 (03) : 1289 - 1357
  • [49] PROJECTIVE REED-MULLER CODES
    SORENSEN, AB
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (06) : 1567 - 1576
  • [50] Projective Space Codes for the Injection Metric
    Khaleghi, Azadeh
    Kschischang, Frank R.
    [J]. 2009 11TH CANADIAN WORKSHOP ON INFORMATION THEORY, 2009, : 9 - 12