On the binary projective codes with dimension 6

被引:8
|
作者
Bouyukliev, Iliya [1 ]
机构
[1] Bulgarian Acad Sci, Inst Math & Informat, Veliko Tarnovo 5000, Bulgaria
关键词
projective codes; code equivalence; canonical labelling; automorphism group; self-orthogonal codes;
D O I
10.1016/j.dam.2006.03.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
All binary projective codes of dimension up to 6 are classified. Information about the number of the codes with different minimum distances and automorphism group orders is given. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1693 / 1708
页数:16
相关论文
共 50 条
  • [1] THE DIMENSION OF PROJECTIVE GEOMETRY CODES
    CECCHERINI, PV
    HIRSCHFELD, JWP
    [J]. DISCRETE MATHEMATICS, 1992, 106 : 117 - 126
  • [2] ON THE LEAST COVERING RADIUS OF BINARY LINEAR CODES OF DIMENSION 6
    Baicheva, Tsonka
    Bouyukliev, Iliya
    [J]. ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2010, 4 (03) : 399 - 404
  • [3] The number of inequivalent binary self-orthogonal codes of dimension 6
    Hou, Xiang-dong
    [J]. ADVANCES IN CODING THEORY AND CRYPTOGRAPHY, 2007, 3 : 244 - 256
  • [4] On the VC-Dimension of Binary Codes
    Hu, Sihuang
    Weinberger, Nir
    Shayevitz, Ofer
    [J]. 2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 594 - 598
  • [5] ON THE VC-DIMENSION OF BINARY CODES
    Hu, Sihuang
    Weinberger, Nir
    Shayevitz, Ofer
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2018, 32 (03) : 2161 - 2171
  • [6] The Lengths of Projective Triply-Even Binary Codes
    Honold, Thomas
    Kiermaier, Michael
    Kurz, Sascha
    Wassermann, Alfred
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (05) : 2713 - 2716
  • [7] Binary and ternary LCD codes from projective spaces
    Seneviratne, Pani
    Melcher, Lauren
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2018, 10 (06)
  • [8] THE TRUE DIMENSION OF CERTAIN BINARY GOPPA CODES
    VANDERVLUGT, M
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (02) : 397 - 398
  • [9] Long Binary Linear Codes and Large Caps in Projective Space
    Aiden A. Bruen
    David L. Wehlau
    [J]. Designs, Codes and Cryptography, 1999, 17 : 37 - 60
  • [10] Projective binary linear codes from special Boolean functions
    Ziling Heng
    Weiqiong Wang
    Yan Wang
    [J]. Applicable Algebra in Engineering, Communication and Computing, 2021, 32 : 521 - 552