The graphs of projective codes

被引:6
|
作者
Kwiatkowski, Mariusz [1 ]
Pankov, Mark [1 ]
Pasini, Antonio [2 ]
机构
[1] Univ Warmia & Mazury, Fac Math & Comp Sci, Sloneczna 54, Olsztyn, Poland
[2] Univ Siena, Dept Informat Engn & Math, Via Roma 56, Siena, Italy
关键词
Linear code; Projective code; Simplex code; Grassmann graph; LINEAR CODES;
D O I
10.1016/j.ffa.2018.07.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider the Grassmann graph formed by k-dimensional subspaces of an n-dimensional vector space over the field of q elements (1 < k < n-1) and denote by II(n, k), the restriction of this graph to the set of projective [n, k](q) codes. In the case when q >= ((n)(2)), we show that the graph II(n, k)(q) is connected, its diameter is equal to the diameter of the Grassmann graph and the distance between any two vertices coincides with the distance between these vertices in the Grassmann graph. Also, we give some observations concerning the graphs of simplex codes. For example, binary simplex codes of dimension 3 are precisely maximal singular subspaces of a non-degenerate quadratic form. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:15 / 29
页数:15
相关论文
共 50 条
  • [1] Projective two-weight codes with small parameters and their corresponding graphs
    Iliya Bouyukliev
    Veerle Fack
    Wolfgang Willems
    Joost Winne
    [J]. Designs, Codes and Cryptography, 2006, 41 : 59 - 78
  • [2] Projective two-weight codes with small parameters and their corresponding graphs
    Bouyukliev, Iliya
    Fack, Veerle
    Willems, Wolfgang
    Winne, Joost
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2006, 41 (01) : 59 - 78
  • [3] Generalized Hamming weights of projective Reed-Muller-type codes over graphs
    Martinez-Bernal, Jose
    Valencia-Bucio, Miguel A.
    Villarreal, Rafael H.
    [J]. DISCRETE MATHEMATICS, 2020, 343 (0I)
  • [4] A Class of Real Expander Codes Based on Projective-Geometrically Constructed Ramanujan Graphs
    Adiga, B. S.
    Chandra, M. Girish
    Kadhe, Swanand
    [J]. INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2011, 11 (01): : 48 - 57
  • [5] Projective toric codes
    Nardi, Jade
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2022, 18 (01) : 179 - 204
  • [6] Projective geometric codes
    Bagchi, B
    Inamdar, SP
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2002, 99 (01) : 128 - 142
  • [7] Note on projective graphs
    Luczak, T
    Nesetril, J
    [J]. JOURNAL OF GRAPH THEORY, 2004, 47 (02) : 81 - 86
  • [8] Strongly projective graphs
    Larose, B
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2002, 54 (04): : 757 - 768
  • [9] INJECTIVE AND PROJECTIVE GRAPHS
    LUEDEMAN, JK
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 1988, 35 (1-2): : 11 - 16
  • [10] GRAPHS WITH PROJECTIVE SUBORBITS
    TROFIMOV, VI
    [J]. MATHEMATICS OF THE USSR-IZVESTIYA, 1992, 39 (01): : 869 - 893