C2 positivity-preserving rational interpolation splines in one and two dimensions

被引:12
|
作者
Zhu, Yuanpeng [1 ]
机构
[1] South China Univ Technol, Dept Math, Guangzhou 510641, Guangdong, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Rational interpolation; Positivity-preserving; Convergence analysis; Approximation order; CONSTRAINTS; MONOTONE;
D O I
10.1016/j.amc.2017.08.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A class of rational quartic/cubic interpolation spline with two local control parameters is presented, which can be C-2 continuous without solving a linear system of consistency equations for the derivative values at the knots. The effects of the local control parameters on generating interpolation curves are illustrated. For C-2 interpolation, the given interpolant can locally reproduce quadratic polynomials and has O (h(2)) or O (h(3)) convergence. Simple schemes for the C-2 interpolant to preserve the shape of 2D positive data are developed. Moreover, based on the Boolean sum of quintic interpolating operators, a class of bi-quintic partially blended rational quartic/ cubic interpolation surfaces is also constructed. The given interpolation surface provides four local control parameters and can be C-2 continuous without using the second or higher mixed partial derivatives on a rectangular grid. Simple sufficient data dependent constraints are also derived on the local control parameters to preserve the shape of a 3D positive data set arranged over a rectangular grid. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:186 / 204
页数:19
相关论文
共 50 条
  • [31] Positivity-preserving scattered data interpolation scheme using the side-vertex method
    Sarfraz, Muhammad
    Hussain, Malik Zawwar
    Ali, Muhammad Arfan
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (15) : 7898 - 7910
  • [32] Interactive shape preserving interpolation by curvature continuous rational cubic splines
    Seymour, C
    Unsworth, K
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 102 (01) : 87 - 117
  • [33] C2 RATIONAL QUADRATIC SPLINE INTERPOLATION TO MONOTONIC DATA
    DELBOURGO, R
    GREGORY, JA
    IMA JOURNAL OF NUMERICAL ANALYSIS, 1983, 3 (02) : 141 - 152
  • [34] A class of bivariate rational interpolation surfaces with C2 continuity
    Qin, Xiangbin
    Zhu, Yuanpeng
    Zhu, Yuanpeng (ypzhu@scut.edu.cn), 1600, International Association of Engineers (50): : 601 - 608
  • [35] Convexity Preserving C2 Rational Quadratic Trigonometric Spline
    Dube, Mridula
    Tiwari, Preeti
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 995 - 998
  • [36] A CONVEXITY-PRESERVING C(2) PARAMETRIC RATIONAL CUBIC INTERPOLATION
    CLEMENTS, JC
    NUMERISCHE MATHEMATIK, 1992, 63 (02) : 165 - 171
  • [37] ENO-based high-order data-bounded and constrained positivity-preserving interpolation
    Ouermi, T. A. J.
    Kirby, Robert M.
    Berzins, Martin
    NUMERICAL ALGORITHMS, 2023, 92 (03) : 1517 - 1551
  • [38] ENO-based high-order data-bounded and constrained positivity-preserving interpolation
    T. A. J. Ouermi
    Robert M. Kirby
    Martin Berzins
    Numerical Algorithms, 2023, 92 : 1517 - 1551
  • [39] Data Visualization using Shape Preserving C2 rational spline
    Sarfraz, M.
    Hussain, M. Z.
    Shaikh, T. S.
    Iqbal, R.
    15TH INTERNATIONAL CONFERENCE ON INFORMATION VISUALISATION (IV 2011), 2011, : 528 - 533
  • [40] Interpolation of 3D data streams with C2 PH quintic splines
    Giannelli, Carlotta
    Sacco, Lorenzo
    Sestini, Alessandra
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2022, 48 (05)