C2 positivity-preserving rational interpolation splines in one and two dimensions

被引:12
|
作者
Zhu, Yuanpeng [1 ]
机构
[1] South China Univ Technol, Dept Math, Guangzhou 510641, Guangdong, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Rational interpolation; Positivity-preserving; Convergence analysis; Approximation order; CONSTRAINTS; MONOTONE;
D O I
10.1016/j.amc.2017.08.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A class of rational quartic/cubic interpolation spline with two local control parameters is presented, which can be C-2 continuous without solving a linear system of consistency equations for the derivative values at the knots. The effects of the local control parameters on generating interpolation curves are illustrated. For C-2 interpolation, the given interpolant can locally reproduce quadratic polynomials and has O (h(2)) or O (h(3)) convergence. Simple schemes for the C-2 interpolant to preserve the shape of 2D positive data are developed. Moreover, based on the Boolean sum of quintic interpolating operators, a class of bi-quintic partially blended rational quartic/ cubic interpolation surfaces is also constructed. The given interpolation surface provides four local control parameters and can be C-2 continuous without using the second or higher mixed partial derivatives on a rectangular grid. Simple sufficient data dependent constraints are also derived on the local control parameters to preserve the shape of a 3D positive data set arranged over a rectangular grid. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:186 / 204
页数:19
相关论文
共 50 条
  • [21] Positivity Preserving Rational Cubic Ball Constrained Interpolation
    Tahat, Ayser Nasir Hassan
    Piah, Abd Rahni Mt
    Yahya, Zainor Ridzuan
    PROCEEDINGS OF THE 21ST NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM21): GERMINATION OF MATHEMATICAL SCIENCES EDUCATION AND RESEARCH TOWARDS GLOBAL SUSTAINABILITY, 2014, 1605 : 331 - 336
  • [22] Positivity preserving interpolation by using rational quartic spline
    Harim, Noor Adilla
    Karim, Samsul Ariffin Abdul
    Othman, Mahmod
    Saaban, Azizan
    Ghaffar, Abdul
    Nisar, Kottakkaran Sooppy
    Baleanu, Dumitru
    AIMS MATHEMATICS, 2020, 5 (04): : 3762 - 3782
  • [23] Monotonicity Preserving Splines Using Rational Ball Cubic Interpolation
    Zakaria, Wan Zafira Ezza Wan
    Jamal, Ena
    Ali, Jamaludin Md.
    22ND NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM22), 2015, 1682
  • [24] Monotonicity Preserving Splines Using Rational Cubic Timmer Interpolation
    Zakaria, Wan Zafira Ezza Wan
    Alimin, Nur Safiyah
    Ali, Jamaludin Md
    PROCEEDINGS OF THE 24TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM24): MATHEMATICAL SCIENCES EXPLORATION FOR THE UNIVERSAL PRESERVATION, 2017, 1870
  • [25] SHAPE PRESERVING C2 CUBIC POLYNOMIAL INTERPOLATING SPLINES
    FIOROT, JC
    TABKA, J
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1988, 307 (03): : 133 - 138
  • [26] INTERACTIVE CURVE DESIGN USING C2 RATIONAL SPLINES
    GREGORY, JA
    SARFRAZ, M
    COMPUTERS & GRAPHICS, 1994, 18 (02) : 153 - 159
  • [27] Positivity Preserving Rational Cubic Trigonometric Fractal Interpolation Functions
    Chand, A. K. B.
    Tyada, K. R.
    MATHEMATICS AND COMPUTING, 2015, 139 : 187 - 202
  • [28] Positivity and Monotonicity Preserving Biquartic Rational Interpolation Spline Surface
    Liu, Xinru
    Zhu, Yuanpeng
    Liu, Shengjun
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [29] A scheme for rational interpolation on a quadrilateral of class C2
    Laghchim-Lahlou, M
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2000, 34 (05): : 913 - 922
  • [30] POSITIVITY PRESERVING INTERPOLATION BY USING RATIONAL CUBIC BALL SPLINE
    Karim, Samsul Ariffin Abdul
    JURNAL TEKNOLOGI, 2016, 78 (11): : 141 - 148