Few-Shot Text Style Transfer via Deep Feature Similarity

被引:22
|
作者
Zhu, Anna [1 ]
Lu, Xiongbo [1 ]
Bai, Xiang [2 ]
Uchida, Seiichi [3 ]
Iwana, Brian Kenji [3 ]
Xiong, Shengwu [1 ]
机构
[1] Wuhan Univ Technol, Sch Comp Sci & Technol, Wuhan 430070, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Elect Informat & Commun, Wuhan 430074, Peoples R China
[3] Kyushu Univ, Sch Informat Sci & Elect Engn, Fukuoka 8190395, Japan
基金
中国国家自然科学基金;
关键词
Feature extraction; Rendering (computer graphics); Gallium nitride; Image color analysis; Generative adversarial networks; Task analysis; Painting; Few-shot; deep similarity; character content; text style transfer; discriminative network;
D O I
10.1109/TIP.2020.2995062
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Generating text to have a consistent style with only a few observed highly-stylized text samples is a difficult task for image processing. The text style involving the typography, i.e., font, stroke, color, decoration, effects, etc., should be considered for transfer. In this paper, we propose a novel approach to stylize target text by decoding weighted deep features from only a few referenced samples. The deep features, including content and style features of each referenced text, are extracted from a Convolutional Neural Network (CNN) that is optimized for character recognition. Then, we calculate the similarity scores of the target text and the referenced samples by measuring the distance along the corresponding channels from the content features of the CNN when considering only the content, and assign them as the weights for aggregating the deep features. To enforce the stylized text to be realistic, a discriminative network with adversarial loss is employed. We demonstrate the effectiveness of our network by conducting experiments on three different datasets which have various styles, fonts, languages, etc. Additionally, the coefficients for character style transfer, including the character content, the effect of similarity matrix, the number of referenced characters, the similarity between characters, and performance evaluation by a new protocol are analyzed for better understanding our proposed framework.
引用
收藏
页码:6932 / 6946
页数:15
相关论文
共 50 条
  • [41] Few-shot object detection via message transfer mechanism
    Lv, Wen
    Shi, Hongbo
    Tan, Shuai
    Song, Bing
    Tao, Yang
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (02)
  • [42] Incremental few-shot object detection via knowledge transfer
    Feng, Hangtao
    Zhang, Lu
    Yang, Xu
    Liu, Zhiyong
    PATTERN RECOGNITION LETTERS, 2022, 156 : 67 - 73
  • [43] Retrieval-style In-context Learning for Few-shot Hierarchical Text Classification
    Chen, Huiyao
    Zhao, Yu
    Chen, Zulong
    Wang, Mengjia
    Li, Liangyue
    Zhang, Meishan
    Zhang, Min
    TRANSACTIONS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, 2024, 12 : 1214 - 1231
  • [44] Boosting few-shot intent detection via feature enrichment and regularization
    Zhang, Feng
    Chen, Wei
    Zhao, Pei
    Wang, Tengjiao
    NEUROCOMPUTING, 2025, 618
  • [45] Few-shot Controllable Style Transfer for Low-Resource Multilingual Settings
    Krishna, Kalpesh
    Nathani, Deepak
    Garcia, Xavier
    Samanta, Bidisha
    Talukdar, Partha
    PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), VOL 1: (LONG PAPERS), 2022, : 7439 - 7468
  • [46] Understanding Cross-Domain Few-Shot Learning Based on Domain Similarity and Few-Shot Difficulty
    Oh, Jaehoon
    Kim, Sungnyun
    Ho, Namgyu
    Kim, Jin-Hwa
    Song, Hwanjun
    Yun, Se-Young
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [47] Causal representation for few-shot text classification
    Yang, Maoqin
    Zhang, Xuejie
    Wang, Jin
    Zhou, Xiaobing
    APPLIED INTELLIGENCE, 2023, 53 (18) : 21422 - 21432
  • [48] Few-shot learning for short text classification
    Yan, Leiming
    Zheng, Yuhui
    Cao, Jie
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (22) : 29799 - 29810
  • [49] Adversarial training for few-shot text classification
    Croce, Danilo
    Castellucci, Giuseppe
    Basili, Roberto
    INTELLIGENZA ARTIFICIALE, 2020, 14 (02) : 201 - 214
  • [50] Few-shot learning for short text classification
    Leiming Yan
    Yuhui Zheng
    Jie Cao
    Multimedia Tools and Applications, 2018, 77 : 29799 - 29810