Few-Shot Text Style Transfer via Deep Feature Similarity

被引:22
|
作者
Zhu, Anna [1 ]
Lu, Xiongbo [1 ]
Bai, Xiang [2 ]
Uchida, Seiichi [3 ]
Iwana, Brian Kenji [3 ]
Xiong, Shengwu [1 ]
机构
[1] Wuhan Univ Technol, Sch Comp Sci & Technol, Wuhan 430070, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Elect Informat & Commun, Wuhan 430074, Peoples R China
[3] Kyushu Univ, Sch Informat Sci & Elect Engn, Fukuoka 8190395, Japan
基金
中国国家自然科学基金;
关键词
Feature extraction; Rendering (computer graphics); Gallium nitride; Image color analysis; Generative adversarial networks; Task analysis; Painting; Few-shot; deep similarity; character content; text style transfer; discriminative network;
D O I
10.1109/TIP.2020.2995062
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Generating text to have a consistent style with only a few observed highly-stylized text samples is a difficult task for image processing. The text style involving the typography, i.e., font, stroke, color, decoration, effects, etc., should be considered for transfer. In this paper, we propose a novel approach to stylize target text by decoding weighted deep features from only a few referenced samples. The deep features, including content and style features of each referenced text, are extracted from a Convolutional Neural Network (CNN) that is optimized for character recognition. Then, we calculate the similarity scores of the target text and the referenced samples by measuring the distance along the corresponding channels from the content features of the CNN when considering only the content, and assign them as the weights for aggregating the deep features. To enforce the stylized text to be realistic, a discriminative network with adversarial loss is employed. We demonstrate the effectiveness of our network by conducting experiments on three different datasets which have various styles, fonts, languages, etc. Additionally, the coefficients for character style transfer, including the character content, the effect of similarity matrix, the number of referenced characters, the similarity between characters, and performance evaluation by a new protocol are analyzed for better understanding our proposed framework.
引用
收藏
页码:6932 / 6946
页数:15
相关论文
共 50 条
  • [31] Stroke-Based Few-Shot Chinese Character Style Transfer
    Liu, Guanghao
    Zhong, Yixin
    Chen, Yuehui
    Cao, Yi
    Zhao, Yaou
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT XI, ICIC 2024, 2024, 14872 : 193 - 202
  • [32] Learning Similarity: Feature-Aligning Network for Few-shot Action Recognition
    Tan, Shaoqing
    Yang, Ruoyu
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [33] A SIMILARITY DISTILLATION GUIDED FEATURE REFINEMENT NETWORK FOR FEW-SHOT SEMANTIC SEGMENTATION
    Lyu, Shuchang
    Liu, Binghao
    Chen, Lijiang
    Zhao, Qi
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 666 - 670
  • [34] A Feature Generator for Few-Shot Learning
    Kanagalingam, Heethanjan
    Pathmanathan, Thenukan
    Ketheeswaran, Navaneethan
    Vathanakumar, Mokeeshan
    Afham, Mohamed
    Rodrigo, Ranga
    arXiv,
  • [35] Few-Shot Image Generation via Style Adaptation and Content Preservation
    He, Xiaosheng
    Yang, Fan
    Liu, Fayao
    Lin, Guosheng
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024,
  • [36] Deep Transfer Learning for Few-Shot SAR Image Classification
    Rostami, Mohammad
    Kolouri, Soheil
    Eaton, Eric
    Kim, Kyungnam
    REMOTE SENSING, 2019, 11 (11)
  • [37] Tomato Fungal Disease Diagnosis Using Few-Shot Learning Based on Deep Feature Extraction and Cosine Similarity
    Javidan, Seyed Mohamad
    Ampatzidis, Yiannis
    Banakar, Ahmad
    Vakilian, Keyvan Asefpour
    Rahnama, Kamran
    AGRIENGINEERING, 2024, 6 (04): : 4233 - 4247
  • [38] Text-to-Feature Diffusion for Audio-Visual Few-Shot Learning
    Mercea, Otniel-Bogdan
    Hummel, Thomas
    Koepke, A. Sophia
    Akata, Zeynep
    PATTERN RECOGNITION, DAGM GCPR 2023, 2024, 14264 : 491 - 507
  • [39] Feature Transfer and Rapid Adaptation for Few-Shot Solar Power Forecasting
    Ren, Xin
    Wang, Yimei
    Cao, Zhi
    Chen, Fuhao
    Li, Yujia
    Yan, Jie
    ENERGIES, 2023, 16 (17)
  • [40] Leveraging the Feature Distribution in Transfer-Based Few-Shot Learning
    Hu, Yuqing
    Gripon, Vincent
    Pateux, Stephane
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2021, PT II, 2021, 12892 : 487 - 499