SRRs Embedded with MEMS Cantilevers to Enable Electrostatic Tuning of the Resonant Frequency

被引:4
|
作者
Moore, E. A. [1 ]
Langley, D. [1 ]
Jussaume, M. E. [1 ]
Rederus, L. A. [1 ]
Lundell, C. A. [1 ]
Coutu, R. A., Jr. [1 ]
Collins, P. J. [1 ]
Starman, L. A. [1 ]
机构
[1] USAF, Inst Technol, Wright Patterson AFB, OH 45433 USA
关键词
Split ring resonator; MEMS; Metamaterials; Cantilever; SRR; Microelectromechanical systems; Varactors; SPLIT-RING RESONATORS; METAMATERIAL;
D O I
10.1007/s11340-011-9498-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A microelectromechanical systems (MEMS) cantilever array was monolithically fabricated in the gap region of a split ring resonator (SRR) to enable electrostatic tuning of the resonant frequency. The design consisted of two concentric SRRs each with a set of cantilevers extending across the split region. The cantilever array consisted of five beams that varied in length from 300 to 400 mu m, with each beam adding about 2 pF to the capacitance as it actuated. The entire structure was fabricated monolithically to reduce its size and minimize losses from externally wire bonded components. The beams actuate one at a time, longest to shortest with an applied voltage ranging from 30-60 V. The MEMS embedded SRRs displayed dual resonant frequencies at 7.3 and 14.2 GHz or 8.4 and 13.5 GHz depending on the design details. As the beams on the inner SRR actuated the 14.2 GHz resonance displayed tuning, while the cantilevers on the outer SRR tuned the 8.4 GHz resonance. The 14.2 GHz resonant frequency shifts 1.6 GHz to 12.6 GHz as all the cantilevers pulled-in. Only the first two beams on the outer cantilever array pulled-in, tuning the resonant frequency 0.4 GHz from 8.4 to 8.0 GHz.
引用
收藏
页码:395 / 403
页数:9
相关论文
共 50 条
  • [21] Frequency adjustment of microelectromechanical cantilevers using electrostatic pull down
    Kafumbe, SMM
    Burdess, JS
    Harris, AJ
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2005, 15 (05) : 1033 - 1039
  • [22] MEMS Resonant Cantilevers for High-Performance Thermogravimetric Analysis of Chemical Decomposition
    Cao, Zhi
    Jia, Hao
    Zhou, Yufan
    Li, Ming
    Xu, Pengcheng
    Li, Xinxin
    Zheng, Dan
    SENSORS, 2023, 23 (13)
  • [23] Frequency Estimation for Resonant MEMS Sensors
    Singh, Ajay K.
    Laxmeesha, S.
    Chellasivalingam, Malar
    Seshia, Ashwin A.
    Baghini, Maryam Shojaei
    2020 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2020,
  • [24] Study of photothermal vibrations of semiconductor cantilevers near the resonant frequency
    Song, Yaqin
    Cretin, Bernard
    Todorovic, Dragan M.
    Vairac, Pascal
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2008, 41 (15)
  • [25] Research on the Resonant Frequency Formula of V-Shaped Cantilevers
    Yang, Kai
    Li, Zhigang
    Jing, Yupeng
    Chen, Dapeng
    Ye, Tianchun
    2009 4TH IEEE INTERNATIONAL CONFERENCE ON NANO/MICRO ENGINEERED AND MOLECULAR SYSTEMS, VOLS 1 AND 2, 2009, : 59 - 62
  • [26] Characteristics of vibration energy harvesting using giant magnetostrictive cantilevers with resonant tuning
    Mori, Kotaro
    Horibe, Tadashi
    Ishikawa, Shigekazu
    Shindo, Yasuhide
    Narita, Fumio
    SMART MATERIALS AND STRUCTURES, 2015, 24 (12)
  • [27] Towards embedded control for resonant scanning MEMS micromirror
    Kuijpers, A. A.
    Lierop, D.
    Sanders, R. H. M.
    Tangenberg, J.
    Moddejonge, H.
    Eikenbroek, J. W. Th.
    Lammerink, T. S. J.
    Wiegerink, R. W.
    PROCEEDINGS OF THE EUROSENSORS XXIII CONFERENCE, 2009, 1 (01): : 1307 - +
  • [28] Tuning CMOS-MEMS Resonators with Embedded Heater
    Goktas, Hasan
    Zaghloul, Mona E.
    2015 1st URSI Atlantic Radio Science Conference (URSI AT-RASC), 2015,
  • [29] RF filter tuning using embedded MEMS actuators
    Yan, Winter D.
    Lu, Hong
    Mansour, Raafat
    Lee, J-. B.
    2005 ASIA-PACIFIC MICROWAVE CONFERENCE PROCEEDINGS, VOLS 1-5, 2005, : 95 - 98
  • [30] Wideband MEMS Electrostatic Energy Harvester With Dual Resonant Structure
    Zhang, Yulong
    Luo, Anxin
    Xu, Yixin
    Wang, Tianyang
    Wang, Fei
    2016 IEEE SENSORS, 2016,