Synthesis and electrical properties of In2O3(ZnO)m superlattice nanobelt

被引:4
|
作者
Tang Xin-Yue [1 ]
Gao Hong [1 ]
Wu Li-Li [2 ]
Wen Jing [1 ]
Pan Si-Ming [1 ]
Liu Xin [1 ]
Zhang Xi-Tian [1 ]
机构
[1] Harbin Normal Univ, Key Lab Photon & Elect Bandgap Mat, Minist Educ, Sch Phys & Elect Engn, Harbin 150025, Peoples R China
[2] Heilongjiang Univ Sci & Technol, Ctr Engn Training & Basic Experimentat, Harbin 150022, Peoples R China
基金
中国国家自然科学基金;
关键词
In2O3(ZnO)(m); superlattice; electrical properties; ZINC-OXIDE; NANOWIRES;
D O I
10.1088/1674-1056/24/2/027305
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
One-dimensional (1D) In2O3(ZnO)(m) superlattice nanobelts are synthesized by a chemical vapor deposition method. The formation of the In2O3(ZnO)(m) superlattice is verified by the high-resolution transmission electron microscopy images. The typical zigzag boundaries could be clearly observed. An additional peak at 614 cm 1 is found in the Raman spectrum, which may correspond to the superlattice structure. The study about the electrical transport properties reveals that the In2O3(ZnO)(m) nanobelts exhibit peculiar nonlinear I-V characteristics even under the Ohmic contact measurement condition, which are different from the Ohmic behaviors of the In-doped ZnO nanobelts. The photoelectrical measurements show the differences in the photocurrent property between them, and their transport mechanisms are also discussed.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Sintering Behavior and Electrical Properties of In2O3 Ceramics with ZnO and Sb2O5 Co-Substitution
    Seo, Kyung-Han
    Lee, Joon-Hyung
    Heo, Young-Woo
    Kim, Jeong-Joo
    JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2011, 6 (03) : 348 - 352
  • [42] Effect of thermal treatment on the electrotransport properties of thin-film In2O3, ZnO materials and the multilayer (In2O3/ZnO)83 heterostructure
    Babkina I.V.
    Gabriel’s K.S.
    Epryntseva T.I.
    Zhilova O.V.
    Makagonov V.A.
    Sitnikov A.V.
    Hlopovskikh P.M.
    Bulletin of the Russian Academy of Sciences: Physics, 2016, 80 (9) : 1168 - 1171
  • [43] Solution combustion synthesis and enhanced gas sensing properties of porous In2O3/ZnO heterostructures
    Zou, Xinwei
    Yan, Xiaoyan
    Li, Guomin
    Tian, Yuming
    Zhang, Mingang
    Liang, Liping
    RSC ADVANCES, 2017, 7 (55): : 34482 - 34487
  • [44] Effects of lattice mismatches in In2O3/substrate structures on the structural, morphological and electrical properties of In2O3 films
    Bouhdjer, A.
    Saidi, H.
    Attaf, A.
    Yahia, A.
    Aida, M. S.
    Benkhetta, O.
    Bouhdjer, L.
    SURFACES AND INTERFACES, 2020, 20
  • [45] Effects of the preparation procedure and In2O3 thickness on the electrical and photovoltaic properties of In2O3/CuInSe2 heterostructures
    Abdullaev, MA
    Kamillov, IK
    Magomedova, DK
    Makatova, GB
    Khokhlachev, PP
    INORGANIC MATERIALS, 2004, 40 (11) : 1181 - 1185
  • [46] Effects of the Preparation Procedure and In2O3 Thickness on the Electrical and Photovoltaic Properties of In2O3 /CuInSe2 Heterostructures
    M. A. Abdullaev
    I. K. Kamillov
    D. Kh. Magomedova
    G. B. Makatova
    P. P. Khokhlachev
    Inorganic Materials, 2004, 40 : 1181 - 1185
  • [47] Electrical and optical properties of In2O3 nanoparticles prepared by MOCVD
    Wang, Ch. Y.
    Cimalla, V.
    Kups, Th.
    Ambacher, O.
    Himmerlich, M.
    Krischok, S.
    2008 2ND IEEE INTERNATIONAL NANOELECTRONICS CONFERENCE, VOLS 1-3, 2008, : 489 - +
  • [48] Structural, Electrical, and Optical Properties of Faceted In2O3 Nanostructures
    Hsin, Cheng-Lun
    Wang, Shang-Ming
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2014, 13 (02) : 172 - 175
  • [49] Role of point defects in the electrical and optical properties of In2O3
    Chatratin, Intuon
    Sabino, Fernando P.
    Reunchan, Pakpoom
    Limpijumnong, Sukit
    Varley, Joel B.
    Van de Walle, Chris G.
    Janotti, Anderson
    PHYSICAL REVIEW MATERIALS, 2019, 3 (07)
  • [50] Effects of In2O3 doping on the microstructure and electrical properties of ZnO-V2O5-Nb2O5 varistor ceramics
    Roy, Tapatee Kundu
    CURRENT APPLIED PHYSICS, 2024, 65 : 32 - 40