Rational first integrals of the Lienard equations: The solution to the Poincare problem for the Lienard equations

被引:1
|
作者
Llibre, Jaume [1 ]
Pessoa, Claudio [2 ]
Ribeiro, Jarne D. [3 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, Barcelona 08193, Catalonia, Spain
[2] Univ Estadual Paulista, Dept Matemat, IBILCE, Campus Sao Jose do Rio Preto, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
[3] IFSULDEMINAS, Inst Fed Educ Ciencia & Tecnol Sul Minas Gerais, Rua Mario Ribola 409,Penha 2, BR-37903358 Passos, MG, Brazil
来源
基金
巴西圣保罗研究基金会; 欧盟地平线“2020”;
关键词
Lienard equation; rational first integral; Poincare problem; polinomial differential equation; LIMIT-CYCLES;
D O I
10.1590/0001-3765202120191139
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Poincare in 1891 asked about the necessary and sufficient conditions in order to characterize when a polynomial differential system in the plane has a rational first integral. Here we solve this question for the class of Lienard differential equations (sic) + f (x)(x)over dot + x = 0, being f (x) a polynomial of arbitrary degree. As far as we know it is the first time that all rational first integrals of a relevant class of polynomial differential equations of arbitrary degree has been classified.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] CUBIC LIENARD EQUATIONS WITH LINEAR DAMPING
    DUMORTIER, F
    ROUSSEAU, C
    [J]. NONLINEARITY, 1990, 3 (04) : 1015 - 1039
  • [32] Fixed and moving limit cycles for Lienard equations
    Gasull, Armengol
    Sabatini, Marco
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2019, 198 (06) : 1985 - 2006
  • [33] Uniqueness of Periodic Solution for a Class of Lienard p-Laplacian Equations
    Cao, Fengjuan
    Han, Zhenlai
    Zhao, Ping
    Sun, Shurong
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2010, : 1 - 14
  • [34] Phase portraits of two classes of Lienard equations
    Li, Jie
    Llibre, Jaume
    [J]. BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2023, 29 (01):
  • [35] On Stability of Periodic Solutions of Lienard Type Equations
    Yin, Zijian
    Chen, Hongbin
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2017, 2017
  • [36] Renormalization group and Lienard systems of differential equations
    Banerjee, Dhruba
    Bhattacharjee, Jayanta K.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (06)
  • [37] Limit cycles in discontinuous classical Lienard equations
    Martins, Ricardo Miranda
    Mereu, Ana Cristina
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2014, 20 : 67 - 73
  • [38] PERIODIC-SOLUTIONS OF GENERALIZED LIENARD EQUATIONS
    ZHENG, ZH
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1990, 148 (01) : 1 - 10
  • [39] Multiple period annuli in Lienard type equations
    Atslega, S.
    Sadyrbaev, F.
    [J]. APPLIED MATHEMATICS LETTERS, 2010, 23 (02) : 165 - 169
  • [40] Global study of a family of cubic Lienard equations
    Khibnik, AI
    Krauskopf, B
    Rousseau, C
    [J]. NONLINEARITY, 1998, 11 (06) : 1505 - 1519