Segmentation of the lumen and media-adventitial borders in intravascular ultrasound images using a geometric deformable model

被引:14
|
作者
Lee, Ju Hwan [1 ]
Hwang, Yoo Na [2 ]
Kim, Ga Young [2 ]
Min, Kim Sung [1 ,2 ]
机构
[1] Dongguk Univ Seoul, Dept Med Devices Ind, 04620 30,Pildong Ro 1 Gil, Seoul, South Korea
[2] Dongguk Univ, Dept Med Biotechnol, Bio Medi Campus 10326 32, Goyang Si, Gyeonggi Do, South Korea
关键词
medical image processing; image segmentation; biomedical ultrasonics; catheters; image denoising; evolutionary computation; set theory; media-adventitial borders; lumen segmentation; intravascular ultrasound images; geometric deformable model; intima segmentation; sequential intravascular ultrasound images; sequential IVUS image frames; human coronary arteries; vessel border estimation; border initialisation; edge preservation; noise reduction; dead zone preservation; local binary pattern-based mask initialisation; modified distance regularised level set evolution model; correlation coefficients; vessel perimeter; maximum vessel diameter; maximum lumen diameter; linear regression analysis; frequency; 20; MHz; 45; FAST-MARCHING METHOD; INTRACORONARY ULTRASOUND; AUTOMATIC SEGMENTATION; CORONARY-ARTERIES; CONTOUR-DETECTION; ACTIVE CONTOURS; IVUS IMAGES; IN-VIVO; PLAQUES; WALL;
D O I
10.1049/iet-ipr.2017.1143
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study presents a geometric deformable model-based segmentation approach to segmentation of the intima and media-adventitial (MA) borders in sequential intravascular ultrasound (IVUS) images. The initial estimation of the vessel borders was done manually only for the first frame of each sequence. After the border initialisation, pre-processing including edge preservation, noise reduction, and dead zone preservation was successively performed on each IVUS frame. To improve segmentation performance, the image masks were determined preliminarily by local binary pattern-based mask initialisation. Then, the inner and outer borders were approximated using a modified distance regularised level set evolution model. The results showed superior performance of the suggested approach for estimating intima and MA layers from the IVUS images. The corresponding correlation coefficients of area, vessel perimeter, maximum vessel diameter, and maximum lumen diameter were r=0.782, r=0.716, r=0.956, and r=0.874 for the 20MHz images, respectively, and r=0.990, r=0.995, r=0.989, and r=0.996 for the 45MHz images, respectively. In addition, linear regression analysis indicated that the manual segmentation had significantly high similarity at r>0.967 and r>0.993 for 20 and 45MHz images, respectively.
引用
收藏
页码:1881 / 1891
页数:11
相关论文
共 50 条
  • [41] Segmentation of three-dimensional intravascular ultrasound images using spectral analysis and a dual active surface model
    Klingensmith, JD
    Nair, A
    Kuban, BD
    Vince, DG
    [J]. 2004 IEEE Ultrasonics Symposium, Vols 1-3, 2004, : 1765 - 1768
  • [42] Gallbladder Segmentation in 2-D Ultrasound Images Using Deformable Contour Methods
    Ciecholewski, Marcin
    [J]. MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE (MDAI), 2010, 6408 : 163 - 174
  • [43] AUTOMATIC CORONARY WALL SEGMENTATION IN INTRAVASCULAR ULTRASOUND IMAGES USING BINARY MORPHOLOGICAL RECONSTRUCTION
    Moraes, Matheus Cardoso
    Furuie, Sergio Shiguemi
    [J]. ULTRASOUND IN MEDICINE AND BIOLOGY, 2011, 37 (09): : 1486 - 1499
  • [44] Multidimensional segmentation of coronary intravascular ultrasound images using knowledge-based methods
    Olszewski, ME
    Wahle, A
    Vigmostad, SC
    Sonka, M
    [J]. MEDICAL IMAGING 2005: IMAGE PROCESSING, PT 1-3, 2005, 5747 : 496 - 504
  • [45] Automatic Cell Segmentation in Fluorescence Images of Confluent Cell Mono layers Using Multi-object Geometric Deformable Model
    Yang, Zhen
    Bogovic, John A.
    Carass, Aaron
    Ye, Mao
    Searson, Peter C.
    Prince, Jerry L.
    [J]. MEDICAL IMAGING 2013: IMAGE PROCESSING, 2013, 8669
  • [46] Top-Down Segmentation of Histological Images Using a Digital Deformable Model
    De Vieilleville, F.
    Lachaud, J. -O.
    Herlin, P.
    Lezoray, O.
    Plancoulaine, B.
    [J]. ADVANCES IN VISUAL COMPUTING, PT 1, PROCEEDINGS, 2009, 5875 : 327 - +
  • [47] Automatic lumen and outer wall segmentation of the carotid artery using a deformable 3D model in MR angiography and vessel wall images
    Van 'T Klooster, R.
    De Koning, P. J. H.
    Dehnavi, R. Alizadeh
    Tamsma, J. T.
    De Roos, A.
    Reiber, J. H. C.
    Van der Geest, R. J.
    [J]. EUROPEAN HEART JOURNAL, 2010, 31 : 1026 - 1026
  • [48] Segmentation of prostate ultrasound images using an improved snakes model
    Jendoubi, A
    Zeng, JC
    Chouikha, MF
    [J]. 2004 7TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS, VOLS 1-3, 2004, : 2568 - 2571
  • [49] Segmentation of female pelvic organs in axial magnetic resonance images using coupled geometric deformable models
    Ma, Zhen
    Natal Jorge, Renato M.
    Mascarenhas, Teresa
    Tavares, Joao Manuel R. S.
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2013, 43 (04) : 248 - 258
  • [50] Automatic 3D segmentation of intravascular ultrasound images using region and contour information
    Cardinal, MHR
    Meunier, J
    Soulez, G
    Maurice, RL
    Thérasse, T
    Cloutier, G
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2005, PT 1, 2005, 3749 : 319 - 326