Bridging the multiscale hybrid-mixed and multiscale hybrid high-order methods

被引:6
|
作者
Chaumont-Frelet, Theophile [1 ]
Ern, Alexandre [2 ,3 ]
Lemaire, Simon [4 ]
Valentin, Frederic [1 ,5 ]
机构
[1] Univ Cote dAzur, INRIA, CNRS, LJAD, F-06902 Sophia Antipolis, France
[2] Ecole Ponts, CERMICS, F-77455 Marne La Vallee 2, France
[3] INRIA, 2 Rue Simone Iff, F-75589 Paris, France
[4] Univ Lille, INRIA, CNRS, UMR 8524,Lab Paul Painleve, F-59000 Lille, France
[5] LNCC Natl Lab Sci Comp, Av Getulio Vargas 333, BR-25651070 Petropolis, RJ, Brazil
关键词
Highly heterogeneous diffusion; multiscale methods; general polytopal meshes; high-order methods; FINITE-ELEMENT METHODS; ELLIPTIC PROBLEMS; MESHES; DECOMPOSITION; CONVERGENCE; DIFFUSION; BUBBLES; MSFEM;
D O I
10.1051/m2an/2021082
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish the equivalence between the Multiscale Hybrid-Mixed (MHM) and the Multiscale Hybrid High-Order (MsHHO) methods for a variable diffusion problem with piecewise polynomial source term. Under the idealized assumption that the local problems defining the multiscale basis functions are exactly solved, we prove that the equivalence holds for general polytopal (coarse) meshes and arbitrary approximation orders. We also leverage the interchange of properties to perform a unified convergence analysis, as well as to improve on both methods.
引用
收藏
页码:261 / 285
页数:25
相关论文
共 50 条
  • [31] The multiscale hybrid mixed method in general polygonal meshes
    Barrenechea, Gabriel R.
    Jaillet, Fabrice
    Paredes, Diego
    Valentin, Frederic
    NUMERISCHE MATHEMATIK, 2020, 145 (01) : 197 - 237
  • [32] Bridging crack propagation at the atomistic and mesoscopic scale for BCC-Fe with hybrid multiscale methods
    Xu, Taolong
    Stewart, Ross
    Fan, Jinghong
    Zeng, Xiangguo
    Yao, Anlin
    ENGINEERING FRACTURE MECHANICS, 2016, 155 : 166 - 182
  • [33] Hybrid and multiscale modelling
    Preziosi, Luigi
    JOURNAL OF MATHEMATICAL BIOLOGY, 2006, 53 (06) : 977 - 978
  • [34] Multiscale hybrid MDS
    Jourdan, F
    Melançon, G
    EIGHTH INTERNATIONAL CONFERENCE ON INFORMATION VISUALISATION, PROCEEDINGS, 2004, : 388 - 393
  • [35] A new higher-order hybrid-mixed curved beam element
    Kim, JG
    Kim, YY
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1998, 43 (05) : 925 - 940
  • [36] Hybrid and multiscale modelling
    Luigi Preziosi
    Journal of Mathematical Biology, 2006, 53 : 977 - 978
  • [37] A MULTISCALE HYBRID METHOD
    Barrenechea, Gabriel R.
    Gomes, Antonio Tadeu A.
    Paredes, Diego
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2024, 46 (03): : A1628 - A1657
  • [38] AN IMPROVED HIGH-ORDER METHOD FOR ELLIPTIC MULTISCALE PROBLEMS
    Dong, Zhaonan
    Hauck, Moritz
    Maier, Roland
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2023, 61 (04) : 1918 - 1937
  • [39] HYBRID MULTISCALE METHODS II. KINETIC EQUATIONS
    Dimarco, Giacomo
    Pareschi, Lorenzo
    MULTISCALE MODELING & SIMULATION, 2008, 6 (04): : 1169 - 1197
  • [40] A HIERARCHY OF HYBRID NUMERICAL METHODS FOR MULTISCALE KINETIC EQUATIONS
    Filbet, Francis
    Rey, Thomas
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (03): : A1218 - A1247