Bridging the multiscale hybrid-mixed and multiscale hybrid high-order methods

被引:6
|
作者
Chaumont-Frelet, Theophile [1 ]
Ern, Alexandre [2 ,3 ]
Lemaire, Simon [4 ]
Valentin, Frederic [1 ,5 ]
机构
[1] Univ Cote dAzur, INRIA, CNRS, LJAD, F-06902 Sophia Antipolis, France
[2] Ecole Ponts, CERMICS, F-77455 Marne La Vallee 2, France
[3] INRIA, 2 Rue Simone Iff, F-75589 Paris, France
[4] Univ Lille, INRIA, CNRS, UMR 8524,Lab Paul Painleve, F-59000 Lille, France
[5] LNCC Natl Lab Sci Comp, Av Getulio Vargas 333, BR-25651070 Petropolis, RJ, Brazil
关键词
Highly heterogeneous diffusion; multiscale methods; general polytopal meshes; high-order methods; FINITE-ELEMENT METHODS; ELLIPTIC PROBLEMS; MESHES; DECOMPOSITION; CONVERGENCE; DIFFUSION; BUBBLES; MSFEM;
D O I
10.1051/m2an/2021082
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish the equivalence between the Multiscale Hybrid-Mixed (MHM) and the Multiscale Hybrid High-Order (MsHHO) methods for a variable diffusion problem with piecewise polynomial source term. Under the idealized assumption that the local problems defining the multiscale basis functions are exactly solved, we prove that the equivalence holds for general polytopal (coarse) meshes and arbitrary approximation orders. We also leverage the interchange of properties to perform a unified convergence analysis, as well as to improve on both methods.
引用
收藏
页码:261 / 285
页数:25
相关论文
共 50 条
  • [21] Fast multiscale regularization methods for high-order numerical differentiation
    Wu, Bin
    Zhang, Qinghui
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2016, 36 (03) : 1432 - 1451
  • [22] An Analysis Platform for Multiscale Hydrogeologic Modeling with Emphasis on Hybrid Multiscale Methods
    Scheibe, Timothy D.
    Murphy, Ellyn M.
    Chen, Xingyuan
    Rice, Amy K.
    Carroll, Kenneth C.
    Palmer, Bruce J.
    Tartakovsky, Alexandre M.
    Battiato, Ilenia
    Wood, Brian D.
    GROUNDWATER, 2015, 53 (01) : 38 - 56
  • [23] Multiscale hybrid simulation methods for material systems
    Csányi, G
    Albaret, T
    Moras, G
    Payne, MC
    De Vita, A
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2005, 17 (27) : R691 - R703
  • [24] A HYBRID-MIXED METHOD FOR ELASTICITY
    Harder, Christopher
    Madureira, Alexandre L.
    Valentin, Frederic
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (02): : 311 - 336
  • [25] Unfitted hybrid high-order methods for the wave equation
    Burman, Erik
    Duran, Omar
    Ern, Alexandre
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 389
  • [26] Unfitted hybrid high-order methods for the wave equation
    Burman, Erik
    Duran, Omar
    Ern, Alexandre
    Computer Methods in Applied Mechanics and Engineering, 2022, 389
  • [27] Hybrid High-Order Methods for the Elliptic Obstacle Problem
    Matteo Cicuttin
    Alexandre Ern
    Thirupathi Gudi
    Journal of Scientific Computing, 2020, 83
  • [28] Hybrid High-Order Methods for the Elliptic Obstacle Problem
    Cicuttin, Matteo
    Ern, Alexandre
    Gudi, Thirupathi
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 83 (01)
  • [29] The multiscale hybrid mixed method in general polygonal meshes
    Gabriel R. Barrenechea
    Fabrice Jaillet
    Diego Paredes
    Frédéric Valentin
    Numerische Mathematik, 2020, 145 : 197 - 237
  • [30] A hybrid high-order method for the mixed Steklov eigenvalue problemA hybrid high-order method for the mixed...R. Bustinza et al.
    Rommel Bustinza
    Matteo Cicuttin
    Ariel L. Lombardi
    Numerische Mathematik, 2025, 157 (2) : 447 - 475