Bridging the multiscale hybrid-mixed and multiscale hybrid high-order methods

被引:6
|
作者
Chaumont-Frelet, Theophile [1 ]
Ern, Alexandre [2 ,3 ]
Lemaire, Simon [4 ]
Valentin, Frederic [1 ,5 ]
机构
[1] Univ Cote dAzur, INRIA, CNRS, LJAD, F-06902 Sophia Antipolis, France
[2] Ecole Ponts, CERMICS, F-77455 Marne La Vallee 2, France
[3] INRIA, 2 Rue Simone Iff, F-75589 Paris, France
[4] Univ Lille, INRIA, CNRS, UMR 8524,Lab Paul Painleve, F-59000 Lille, France
[5] LNCC Natl Lab Sci Comp, Av Getulio Vargas 333, BR-25651070 Petropolis, RJ, Brazil
关键词
Highly heterogeneous diffusion; multiscale methods; general polytopal meshes; high-order methods; FINITE-ELEMENT METHODS; ELLIPTIC PROBLEMS; MESHES; DECOMPOSITION; CONVERGENCE; DIFFUSION; BUBBLES; MSFEM;
D O I
10.1051/m2an/2021082
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish the equivalence between the Multiscale Hybrid-Mixed (MHM) and the Multiscale Hybrid High-Order (MsHHO) methods for a variable diffusion problem with piecewise polynomial source term. Under the idealized assumption that the local problems defining the multiscale basis functions are exactly solved, we prove that the equivalence holds for general polytopal (coarse) meshes and arbitrary approximation orders. We also leverage the interchange of properties to perform a unified convergence analysis, as well as to improve on both methods.
引用
收藏
页码:261 / 285
页数:25
相关论文
共 50 条
  • [1] ON THE ROBUSTNESS OF MULTISCALE HYBRID-MIXED METHODS
    Paredes, Diego
    Valentin, Frederic
    Versieux, Henrique M.
    MATHEMATICS OF COMPUTATION, 2017, 86 (304) : 525 - 548
  • [2] MULTISCALE HYBRID-MIXED METHOD
    Araya, Rodolfo
    Harder, Christopher
    Paredes, Diego
    Valentin, Frederic
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (06) : 3505 - 3531
  • [3] An adaptive multiscale hybrid-mixed method for the Oseen equations
    Araya, Rodolfo
    Carcamo, Cristian
    Poza, Abner H.
    Valentin, Frederic
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2021, 47 (01)
  • [4] An adaptive multiscale hybrid-mixed method for the Oseen equations
    Rodolfo Araya
    Cristian Cárcamo
    Abner H. Poza
    Frédéric Valentin
    Advances in Computational Mathematics, 2021, 47
  • [5] A MULTISCALE HYBRID-MIXED METHOD FOR THE HELMHOLTZ EQUATION IN HETEROGENEOUS DOMAINS
    Chaumont-Frelet, Theophile
    Valentin, Frederic
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (02) : 1029 - 1067
  • [6] A family of Multiscale Hybrid-Mixed finite element methods for the Darcy equation with rough coefficients
    Harder, Christopher
    Paredes, Diego
    Valentin, Frederic
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 245 : 107 - 130
  • [7] THE MULTISCALE HYBRID-MIXED METHOD FOR THE MAXWELL EQUATIONS IN HETEROGENEOUS MEDIA
    Lanteri, Stephane
    Paredes, Diego
    Scheid, Claire
    Valentin, Frederic
    MULTISCALE MODELING & SIMULATION, 2018, 16 (04): : 1648 - 1683
  • [8] Multiscale hybrid-mixed method for the Stokes and Brinkman equations-The method
    Araya, Rodolfo
    Harder, Christopher
    Poza, Abner H.
    Valentin, Frederic
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 324 : 29 - 53
  • [9] A Petrov–Galerkin multiscale hybrid-mixed method for the Darcy equation on polytopes
    Honório Fernando
    Larissa Martins
    Weslley Pereira
    Frédéric Valentin
    Computational and Applied Mathematics, 2023, 42
  • [10] Bridging the hybrid high-order and virtual element methods
    Lemaire, Simon
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2021, 41 (01) : 549 - 593