Bimetallic Zn and Hf on Silica Catalysts for the Conversion of Ethanol to 1,3-Butadiene

被引:66
|
作者
De Baerdemaeker, Trees [1 ]
Feyen, Mathias [2 ]
Mueller, Ulrich [2 ]
Yilmaz, Bilge [3 ]
Xiao, Feng-Shou [4 ]
Zhang, Weiping [5 ]
Yokoi, Toshiyuki [6 ]
Bao, Xinhe [7 ]
Gies, Hermann [8 ]
De Vos, Dirk E. [1 ]
机构
[1] Katholieke Univ Leuven, Ctr Surface Chem & Catalysis, B-3001 Leuven, Belgium
[2] BASF SE, Proc Res & Chem Engn, D-67056 Ludwigshafen, Germany
[3] BASF Corp, Proc Catalysts & Technol, Iselin, NJ 08830 USA
[4] Zhejiang Univ, Hangzhou 310028, Zhejiang, Peoples R China
[5] Dalian Univ Technol, State Key Lab Fine Chem, Dalian 116024, Peoples R China
[6] Tokyo Inst Technol, Chem Resources Lab, Yokohama, Kanagawa 2268503, Japan
[7] Dalian Inst Chem Phys, State Key Lab Catalysis, Dalian 116023, Peoples R China
[8] Ruhr Univ Bochum, Inst Geol Mineral & Geophys, D-44780 Bochum, Germany
来源
ACS CATALYSIS | 2015年 / 5卷 / 06期
关键词
1,3-butadiene; ethanol; zinc silicate; hemimorphite; heterogeneous catalysis; silica impregnation; MAGNESIUM-OXIDE; METAL-OXIDES; BUTADIENE; HYDROXYAPATITE; TRANSFORMATION; SELECTIVITY; BASICITY; ACETONE; LEBEDEV;
D O I
10.1021/acscatal.5b00376
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Silica-supported catalysts for the conversion of ethanol to 1,3-butadiene were investigated. The combination of Hf(IV) and Zn(II) resulted in a stable, active, and selective catalyst in which the Zn(II) effectively suppressed the dehydration activity of Hf(IV); the catalyst preparation method plays a crucial role. Using the crystalline Zn-silicate hemimorphite as an alternative Zn(II) source proved to be even more successful in suppressing ethanol dehydration.
引用
收藏
页码:3393 / 3397
页数:5
相关论文
共 50 条
  • [31] Effect of Lanthanum in Zn-La(-Zr)-Si Oxide Compositions on their Activity in the Conversion of Ethanol into 1,3-Butadiene
    Larina, O. V.
    Kyriienko, P. I.
    Soloviev, S. O.
    [J]. THEORETICAL AND EXPERIMENTAL CHEMISTRY, 2016, 52 (01) : 51 - 56
  • [32] Effect of Lanthanum in Zn-La(-Zr)-Si Oxide Compositions on their Activity in the Conversion of Ethanol into 1,3-Butadiene
    O. V. Larina
    P. I. Kyriienko
    S. O. Soloviev
    [J]. Theoretical and Experimental Chemistry, 2016, 52 : 51 - 56
  • [33] Morphological control of inverted MgO-SiO2 composite catalysts for efficient conversion of ethanol to 1,3-butadiene
    Li, Shenxiao
    Men, Yong
    Wang, Jinguo
    Liu, Shuang
    Wang, Xuefei
    Ji, Fei
    Chai, Shanshan
    Song, Qiaoling
    [J]. APPLIED CATALYSIS A-GENERAL, 2019, 577 : 1 - 9
  • [34] CATALYTIC CONVERSION OF ETHANOL INTO 1,3-BUTADIENE OVER ZNO-SUPPORTED SEPIOLITE
    KITAYAMA, Y
    ABE, A
    [J]. NIPPON KAGAKU KAISHI, 1989, (11) : 1824 - 1829
  • [35] Modelling the effects of reaction temperature and flow rate on the conversion of ethanol to 1,3-butadiene
    Da Ros, Simoni
    Jones, Matthew D.
    Mattia, Davide
    Schwaab, Marcio
    Noronha, Fabio B.
    Pinto, Jose Carlos
    [J]. APPLIED CATALYSIS A-GENERAL, 2017, 530 : 37 - 47
  • [36] Influence of structural parameters on the conversion of ethanol into 1,3-butadiene using mesoporous zeolites
    Klein, Alexander
    Palkovits, Regina
    [J]. CATALYSIS COMMUNICATIONS, 2017, 91 : 72 - 75
  • [37] Pd-Au bimetallic catalysts supported on ZnO for selective 1,3-butadiene hydrogenation
    Bachiller-Baeza, Belen
    Iglesias-Juez, Ana
    Agostini, Giovanni
    Castillejos-Lopez, Eva
    [J]. CATALYSIS SCIENCE & TECHNOLOGY, 2020, 10 (08) : 2503 - 2512
  • [38] Effect of oxide supports on Pd-Ni bimetallic catalysts for 1,3-butadiene hydrogenation
    Hou, Ruijun
    Porosoff, Marc D.
    Chen, Jingguang G.
    Wang, Tiefeng
    [J]. APPLIED CATALYSIS A-GENERAL, 2015, 490 : 17 - 23
  • [39] VARIETIES OF MGO CATALYSTS FOR 1,3-BUTADIENE HYDROGENATION
    MIYAHARA, K
    MURATA, Y
    TOYOSHIMA, I
    TANAKA, Y
    YOKOYAMA, T
    [J]. JOURNAL OF CATALYSIS, 1981, 68 (01) : 186 - 189
  • [40] VAPOR-PHASE CATALYTIC CONVERSION OF ETHANOL INTO 1,3-BUTADIENE ON Cr-Ba/MCM-41 CATALYSTS
    La-Salvia, N.
    Lovon-Quintana, J. J.
    Valenca, G. P.
    [J]. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING, 2015, 32 (02) : 489 - 500