Spatiotemporal disappearance model for traffic flow under large public activity

被引:0
|
作者
Cui, Hongju [1 ]
Wei, Lianyu [1 ]
Liu, Weizheng [1 ]
机构
[1] Hebei Univ Technol, Sch Civil Engn, Tianjin, Peoples R China
关键词
traffic management; spatiotemporal disappearance model; traffic flow; large public activities; the 10(th) National Games;
D O I
暂无
中图分类号
F [经济];
学科分类号
02 ;
摘要
Large public activity has more and more impact on urban traffic system operation. So it is significant to research the traffic flow spatiotemporal change under large public activity. According to traffic investigation during the 10(th) National Games, the spatiotemporal distribution change of traffic flow is deeply researched to build up a spatiotemporal disappear models for traffic control under a large public activity. In the end, the rationality of the model is tested accurate and reliable to apply by a practical case.
引用
收藏
页码:317 / 325
页数:9
相关论文
共 50 条
  • [41] Empirical capacity model for roundabouts under heterogeneous traffic flow conditions
    Patnaik, Ashish K.
    Rao, Shweta
    Krishna, Yadu
    Bhuyan, P. K.
    TRANSPORTATION LETTERS-THE INTERNATIONAL JOURNAL OF TRANSPORTATION RESEARCH, 2017, 9 (03): : 152 - 165
  • [42] Spatiotemporal Patterns in Large-Scale Traffic Speed Prediction
    Asif, Muhammad Tayyab
    Dauwels, Justin
    Goh, Chong Yang
    Oran, Ali
    Fathi, Esmail
    Xu, Muye
    Dhanya, Menoth Mohan
    Mitrovic, Nikola
    Jaillet, Patrick
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2014, 15 (02) : 794 - 804
  • [43] Spatiotemporal Fusion Transformer for large-scale traffic forecasting
    Wang, Zhenghong
    Wang, Yi
    Jia, Furong
    Zhang, Fan
    Klimenko, Nikita
    Wang, Leye
    He, Zhengbing
    Huang, Zhou
    Liu, Yu
    INFORMATION FUSION, 2024, 107
  • [44] Air Traffic Flow Prediction with Spatiotemporal Knowledge Distillation Network
    Shen, Zhiqi
    Cai, Kaiquan
    Fang, Quan
    Luo, Xiaoyan
    JOURNAL OF ADVANCED TRANSPORTATION, 2024, 2024
  • [45] Traffic Flow Prediction Based on Spatiotemporal Potential Energy Fields
    Wang, Jingyuan
    Ji, Jiahao
    Jiang, Zhe
    Sun, Leilei
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (09) : 9073 - 9087
  • [46] Spatiotemporal Residual Graph Attention Network for Traffic Flow Forecasting
    Zhang, Qingyong
    Li, Changwu
    Su, Fuwen
    Li, Yuanzheng
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (13) : 11518 - 11532
  • [47] Spatiotemporal Graph Attention Networks for Urban Traffic Flow Prediction
    Zhao, Yuanpeng
    Xu, Yepeng
    He, Xitao
    Zhang, Dengyin
    2022 IEEE 33RD ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS (IEEE PIMRC), 2022, : 340 - 345
  • [48] Robust and Responsive Learning of Spatiotemporal Urban Traffic Flow Relationships
    Pavlyuk, Dmitry
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (09) : 14524 - 14541
  • [49] A Spatiotemporal Multiscale Graph Convolutional Network for Traffic Flow Prediction
    Cao, Shuqin
    Wu, Libing
    Zhang, Rui
    Wu, Dan
    Cui, Jianqun
    Chang, Yanan
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (08) : 8705 - 8718
  • [50] Dynamic Spatiotemporal Graph Wavelet Network for Traffic Flow Prediction
    Xu, Weijian
    Liu, Jingjin
    Yan, Jingwen
    Yang, Juan
    Liu, Huifen
    Zhou, Teng
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (05): : 8019 - 8029