A Meta-Methodology for Improving Land Cover and Land Use Classification with SAR Imagery

被引:6
|
作者
Soares, Marinalva Dias [1 ]
Dutra, Luciano Vieira [1 ]
Ostwald Pedro da Costa, Gilson Alexandre [2 ]
Feitosa, Raul Queiroz [3 ]
Negri, Rogerio Galante [4 ]
Diaz, Pedro M. A. [3 ]
机构
[1] Natl Inst Space Res INPE, Image Proc Div, BR-12227010 Sao Jose Dos Campos, SP, Brazil
[2] Rio de Janeiro State Univ UERJ, Dept Informat & Comp Sci, BR-20550000 Rio De Janeiro, RJ, Brazil
[3] Pontifical Catholic Univ Rio de Janeiro PUC Rio, Dept Elect Engn, BR-22451900 Rio De Janeiro, RJ, Brazil
[4] Sao Paulo State Univ Unesp, Inst Sci & Technol, BR-12245000 Sao Jose Dos Campos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
region-based classification; GEOBIA; SAR classification; LULC classification; SAR data segmentation; segmentation tuning; meta-methodologies;
D O I
10.3390/rs12060961
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Per-point classification is a traditional method for remote sensing data classification, and for radar data in particular. Compared with optical data, the discriminative power of radar data is quite limited, for most applications. A way of trying to overcome these difficulties is to use Region-Based Classification (RBC), also referred to as Geographical Object-Based Image Analysis (GEOBIA). RBC methods first aggregate pixels into homogeneous objects, or regions, using a segmentation procedure. Moreover, segmentation is known to be an ill-conditioned problem because it admits multiple solutions, and a small change in the input image, or segmentation parameters, may lead to significant changes in the image partitioning. In this context, this paper proposes and evaluates novel approaches for SAR data classification, which rely on specialized segmentations, and on the combination of partial maps produced by classification ensembles. Such approaches comprise a meta-methodology, in the sense that they are independent from segmentation and classification algorithms, and optimization procedures. Results are shown that improve the classification accuracy from Kappa = 0.4 (baseline method) to a Kappa = 0.77 with the presented method. Another test site presented an improvement from Kappa = 0.36 to a maximum of 0.66 also with radar data.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Land cover classification from SAR/IFSAR imagery
    Lefevre, RJ
    Jaroszewski, SJ
    Pieramico, AF
    Corbeil, AF
    Fox, BJ
    Jackson, C
    [J]. RECORD OF THE IEEE 2000 INTERNATIONAL RADAR CONFERENCE, 2000, : 160 - 165
  • [2] Land Use/Land Cover Classification of Google Earth Imagery
    Sowmya, D. R.
    Hegde, Vishwas S.
    Suhas, J.
    Hegdekatte, Raghavendra V.
    Shenoy, P. Deepa
    Venugopal, K. R.
    [J]. 2017 IEEE INTERNATIONAL WIE CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (IEEE WIECON-ECE 2017), 2017, : 10 - 13
  • [3] THE USE OF LAND COVER CHANGE LIKELIHOOD FOR IMPROVING LAND COVER CLASSIFICATION
    Reis, Mariane S.
    Sant'Anna, Sidnei J. S.
    Dutra, Luciano V.
    Escada, Maria Isabel S.
    Pantaleao, Eliana
    [J]. 2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 3222 - 3225
  • [4] SAR DATA FOR LAND USE LAND COVER CLASSIFICATION IN A TROPICAL REGION WITH FREQUENT CLOUD COVER
    Prudente, V. H. R.
    Sanches, I. D.
    Adami, M.
    Skakun, S.
    Oldoni, L., V
    Xaud, H. A. M.
    Xaud, M. R.
    Zhang, Y.
    [J]. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 4100 - 4103
  • [5] Land Use and Cover Classification of Sentinel-1A SAR Imagery: A Case Study of Istanbul
    Ustuner, Mustafa
    Sanli, Fusun Balik
    Bilgin, Gokhan
    Abdikan, Saygin
    [J]. 2017 25TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2017,
  • [6] Texture analysis of IKONOS satellite imagery for urban land use and land cover classification
    Kabir, S.
    He, D-C
    Sanusi, M. A.
    Hussin, W. M. A. Wan
    [J]. IMAGING SCIENCE JOURNAL, 2010, 58 (03): : 163 - 170
  • [7] Feature-based Land Use/Land Cover Classification of Google Earth Imagery
    Sowmya, D. R.
    Shenoy, P. Deepa
    Venugopal, K. R.
    [J]. 2019 IEEE 5TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2019,
  • [8] Polarimetric analysis of land use and cover using SAR polarimetry target analysis and the Corine Land Cover methodology
    Garzon, Juan Carlos Parra
    Escorcia, Jose Luis Herrera
    Forero, Rocio Triana
    [J]. PERSPECTIVA GEOGRAFICA, 2023, 28 (02): : 1 - 16
  • [9] Methodology of Accuracy Assessment of Land Cover Classification using Hyperion and AVIRIS Imagery
    Glennon, Mary Ann
    Puetz, Capt Angela
    Cooley, Thomas
    Lockwood, Ronald
    Cipar, John
    Payton, Steven
    Tompkins, Stefanie
    [J]. 2006 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, 2006, : 2095 - +
  • [10] Urban land cover and land use classification using multispectral sentinal-2 imagery
    Pramod Kumar Soni
    Navin Rajpal
    Rajesh Mehta
    Vikash Kumar Mishra
    [J]. Multimedia Tools and Applications, 2022, 81 : 36853 - 36867